首页> 外文会议>Annual IEEE Semiconductor Thermal Measurement, Modeling and Management Symposium >A 2-D numerical study of microscale phase change material thermal storage for GaN transistor thermal management
【24h】

A 2-D numerical study of microscale phase change material thermal storage for GaN transistor thermal management

机译:GAN晶体管热管理微观相变材料热存储器的二维数值研究

获取原文
获取外文期刊封面目录资料

摘要

A novel thermal management technology was explored to lower the peak temperature associated with high power GaN transistors in pulse application. The technology involves the use of an embedded microscale PCM heat storage device within the chip (near the active channels of the GaN device), which effectively increases the heat capacity of the material by taking advantage of the latent heat of the PCM. In this study, 2-D transient thermal models were developed to characterize the thermal behavior of GaN transistors with micro-scale PCM heat storage device. The model is capable of computing the spatial-temporal temperature distribution of the GaN transistor as it is rapidly pulsed and captures the formation and evolution of hot spots that form within the device. The model also captures the PCM melting behavior and latent heat absorption during the transient. The use of a PCM can effectively control the hot spot temperature by absorbing a significant portion of the transient heat input. As shown in this modeling study, the use of PCM heat storage in GaN transistors reduces the GaN hot spot temperature for a given heat input. Alternatively, the maximum allowable GaN heat input can be increased with the use of PCM. At a given heat input flux of 5×105 W/cm2, for example, the use of PCM heat storage can lower the peak temperature by 21∼22°C, relative to transistors without PCM (baseline), regardless of the duty cycle ratio. In addition, a transistor with PCM heat storage can accommodate much higher joule heat generation without exceeding the maximum allowable temperature limit, 180°C. In this study, the modeling results show that by integrating a PCM that has a 140°C melting point in a 5μm×6μm groove configuration, the critical heat flux can be increased from 13.34×105 W/cm2 (baseline) to 16.8×105 W/cm2 (with PCM), a 26% improvemen- - t. Key PCM design parameters were identified in this modeling study: (1) PCM amount; (2) PCM melting point; and (3) PCM groove structure. Their coupling and the impact on design optimization require further investigation.
机译:探讨了一种新的热管理技术,以降低脉冲应用中的高功率GaN晶体管的峰值温度。该技术涉及使用芯片内的嵌入式微尺寸PCM蓄热装置(靠近GaN装置的有源通道),这通过利用PCM的潜热,有效地提高了材料的热量。在该研究中,开发了2-D瞬态热模型,以表征GaN晶体管的热行为用微级PCM蓄热装置。该模型能够计算GaN晶体管的空间温度分布,因为它迅速脉冲并且捕获在装置内形成的热点的形成和演化。该模型还捕获了瞬态的PCM熔化行为和潜热吸收。 PCM的使用可以通过吸收大部分瞬态热输入来有效地控制热点温度。如该建模研究所示,在GaN晶体管中使用PCM蓄热剂可降低给定热量输入的GaN热点温度。或者,使用PCM可以增加最大允许的GaN热输入。在给定的热输入通量为5×10 5 w / cm 2 ,例如,使用PCM蓄热可以将峰值温度降低21〜22°C ,相对于没有PCM(基线)的晶体管,无论占空比比如何。另外,具有PCM蓄热的晶体管可以容纳更高的焦耳发热而不超过最大允许的温度限制,180℃。在本研究中,建模结果表明,通过将具有140°C熔点的PCM集成为5μm×6μm槽配置,临界热通量可以从13.34×10 5增加5 w / Cm 2 (基线)至16.8×10 5 w / cm 2 (用pcm),增加26%的即兴延长员-T。在该建模研究中确定了关键PCM设计参数:(1)PCM金额; (2)PCM熔点; (3)PCM沟槽结构。它们的耦合和对设计优化的影响需要进一步调查。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号