首页> 外文会议>Materials Research Society Meeting >Tuning Light Scattering by Periodic Metal Nanoparticle Arrays for Solar Cell Applications
【24h】

Tuning Light Scattering by Periodic Metal Nanoparticle Arrays for Solar Cell Applications

机译:通过定期金属纳米粒子阵列调谐光散射,用于太阳能电池应用

获取原文

摘要

The drive to reduce the thickness of solar cells is putting ever greater demands on light-trapping techniques. Techniques are required to improve absorption of light within the semiconductor, while not adversely affecting the electrical properties of the device. Conventional diffraction gratings can scatter visible and near-infrared photons into large angles, which get trapped in the silicon layer by total internal reflection. However, diffraction gratings typically have large feature sizes and so increase the overall surface area of a solar cell compared to the planar case. A periodic arrangement of metal nanoparticles acts as a diffraction grating, but an over-coated semiconductor will have a similar surface area to a planar layer due a combination of a low particle height and low surface coverage. Random arrays of identical metal nanoparticles feature Lorentzian scattering peaks that can be tuned by modifying the size and shape of the particle. Periodic arrays have much more complicated scattering peaks, due to the enhancement and suppression of scattering at different wavelengths caused by the constructive and destructive interference between each nanoparticle. In effect the scattering spectrum of the individual nanoparticle is modified by the diffractive orders of the array, and so both parameters must be optimized together. We have studied periodic arrays of metal nanoparticles fabricated using electron-beam lithography, and characterised their reflectance properties. The optical properties of the fabricated arrays were found to be in good agreement with finite-difference time-domain (FDTD) simulations. Au and Al nanoparticles are found to have a strong scattering effect and Al nanoparticles are also shown to exhibit an anti-reflection effect in combination with scattering. This work is focused on verifying that FDTD simulations can accurately model metal nanoparticle arrays and then extending the simulations to determine the previously unknown transmittance characteristics of metal nanoparticle arrays on silicon.
机译:减少太阳能电池厚度的驱动器对光捕集技术进行了更大的要求。需要改善半导体内光的吸收所需的技术,同时不会对装置的电性能产生不利影响。传统的衍射光栅可以将可见光和近红外光子散射成大角度,通过全内反射被捕获在硅层中。然而,衍射光栅通常具有大的特征尺寸,并且与平面壳体相比增加了太阳能电池的总表面积。金属纳米颗粒的周期性布置用作衍射光栅,但是过涂覆的半导体将具有与低粒度高度和低表面覆盖的组合的平面层的类似表面积。相同金属纳米颗粒的随机阵列具有洛伦盾的散射峰,可以通过改变颗粒的尺寸和形状来调节。由于在每个纳米颗粒之间的建设性和破坏性干扰引起的不同波长下散射而散射,周期阵列具有更复杂的散射峰。实际上,各个纳米颗粒的散射光谱通过阵列的衍射令改变,因此两个参数必须一起优化。我们已经研究了使用电子束光刻制造的金属纳米粒子的周期性阵列,并表征了它们的反射性能。发现制造阵列的光学性质与有限差分时间域(FDTD)模拟有关良好的一致性。发现Au和Al纳米颗粒具有强散射效果,并且还显示Al纳米颗粒表现出与散射组合的抗反射效果。这项工作专注于验证FDTD模拟可以准确地模拟金属纳米粒子阵列,然后延长模拟以确定硅纳米颗粒阵列的先前未知的透射率特性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号