首页> 外文会议>Conference on Theory and applications of computational chemistry >Extended Soft Binding Mean Spherical- Contact Probability Approximation for Hard Ions
【24h】

Extended Soft Binding Mean Spherical- Contact Probability Approximation for Hard Ions

机译:硬离子的延伸软绑定平均球形 - 接触概率近似

获取原文

摘要

We propose a new analytical theory of electrolytes that extends the range of the Mean Spherical Approximation (MSA) to include extremely high charges [1, 2, 3, 4, 5]. In the MSA the thermodynamics and structure of the most general electrolyte are given in terms of a single screening parameter F, [1] which is obtained from the simple algebraic equation 4F2 47rABDa; (1) where zt— 11cr R2 Da = Epk4; Xi = AB= = 7.15 A; 1 + and /I is usually a small parameter that is zero for equal sizes ions [6]. Here zi is the charge of the ion i, the density is pi and cri is the diameter. When association occurs [7], /1 depends on the short ranged interactions, and on a, the degree of association which also determines E, the effective dielectric constant. The binding MSA (BIMSA) gives the correct high and low density limiting behavior of the contact pair distribution function and thermodynamics [8, 9]. It is very useful for practical applications[ 10, 11]. The BIMSA extends the range of the MSA substantially and is the only existing theory that gets the correct high and low density Debye-Hueckel limiting law including the associated ions and dipoles [12]. This term is crucial in obtaining the excellent agreement with computer simulations of Bresme et al [30] ( see figure 1, [13]). The correct behavior is obtained including nonlinear (exponential) terms in the closure of the Ornstein-Zernike equations. Many of the traditional exponential closures, such as the HNC and others (even those that include bridge functions [14]) are not adequate, since they do not get the full association limits correctly and the comparison to simulation is generally poor for charged systems. In our new theory we add an extra exponential term to the closure with the requirement that the contact pair correlation function be given by the exp approximation [15, 16], but treating the associating ions as an ion-dipole mixture [7, 12], gif (Cu] = gtJ-S (07 j)e t2e0 (3) In the case of the general polydisperse electrolyte this leads to a new analytical equation that we have solved explicitly in the one yukawa closure [17].
机译:我们提出了一种新的电解质理论,其延伸平均球形近似(MSA)的范围,包括极高的电荷[1,2,3,4,5]。在MSA中,根据单个筛选参数F,[1]给出了最通用电解质的热力学和结构,从简单的代数等式4f2 47rabda获得; (1)其中zt-11cr r2 da = epk4; xi = ab = 7.15 a; 1 +和/ i通常是一个用于等尺寸离子的零的小参数[6]。这里Zi是离子I的电荷,密度为Pi,CRI是直径。当关联发生[7]时,/ 1取决于短的间距相互作用,并且在A的关联程度上,还确定E,有效介电常数。绑定MSA(BIMSA)给出了接触对分布函数和热力学的正确高和低密度限制行为[8,9]。它对实际应用非常有用[10,11]。 BIMSA基本上延伸了MSA的范围,并且是唯一获得的现有理论,可获得具有相关离子和偶极子的正确高和低密度Debye-Hueckel限制定律[12]。该术语对于获得Bresme等[30]的计算机模拟的优异协议至关重要(参见图1,[13])。获得了正确的行为,包括闭合奥恩斯坦 - Zernike方程中的非线性(指数)术语。许多传统的指数封闭件(例如HNC和其他)(即使包括桥式功能[14])也不足够,因为它们没有正确地获得完整关联限制,并且模拟的比较通常不适合带电系统。在我们的新理论中,我们将额外的指数术语添加到封闭的要求下,要求通过EXP近似[15,16]给出接触对相关函数,但将关联离子作为离子偶极混合物[7,12]。 ,GIF(CU] = GTJ-S(07J)E T2E0(3)在一般多分体电解质的情况下,这导致了我们在一个Yukawa闭合中明确解决的新分析方程[17]。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号