首页> 外文会议>European Conferenc of the International Federation for Medical and Biological Engineering >Continuous oxygen consumption estimation method for animal cell bioreactors based on a low-cost control of the medium dissolved oxygen concentration
【24h】

Continuous oxygen consumption estimation method for animal cell bioreactors based on a low-cost control of the medium dissolved oxygen concentration

机译:基于介质溶解氧浓度的低成本控制的动物细胞生物反应器的连续氧气消耗估计方法

获取原文

摘要

The applications of animal cell cultures are becoming wider every day: protein and vaccine production, toxicity tests, development of tissue and cell therapies, as well as stem cell research. All of these issues, require the use of reliable bioreactors to ensure reproducible culture conditions and data collection. Some common functions of these systems are aeration, stirring, thermoregulation, pH control, so as measurement of variables like biomass density, pCO2, pO2, etc. However, for certain cell species, the traditional probes are not able to provide enough data to evaluate the cells metabolic response, in such cases the study of oxygen consumption becomes a useful tool, where OUR (Oxygen Uptake Rate) is one of the key parameters commonly used. The most straightforward current technique for on-line OUR determination is the 'Dynamic Method', however, this low cost strategy has some drawbacks that can be overcome if accurate control of the culture medium dissolved oxygen concentration is applied. This strategy is known as 'Stationary liquid phase balance method'. Previous realizations of the referred technique implied the use of expensive mass flow meters and constant gas flow rate to keep the dissolved oxygen concentration constant. An approach for a continuous OUR estimation method, taking protit of the advantages of both methods referred above is presented. Where pulse commanded pinch electrovalves can be used, instead of a mass flow meter, to provide pulse width modulated gas flow in order to keep the dissolved oxygen set-point. The OUR information can be directly estimated from the control loop parameters. The classical OUR dynamic method has been implemented in a six minibioreactor (10 ml) system (liexascreen) using optical oxygen probes. The minibioreactor gas dynamics has been modelled and the proposed approach performance has been simulated and is being tested.
机译:动物细胞培养的应用每天都变得更加宽:蛋白质和疫苗生产,毒性试验,组织和细胞疗法的发育,以及干细胞研究。所有这些问题都需要使用可靠的生物反应器来确保可重复的培养条件和数据收集。这些系统的一些常见功能是曝气,搅拌,热调节,pH控制,以及测量生物量密度,PCO2,PO2等的变量,但对于某些细胞物种,传统探针无法提供足够的数据来评估细胞代谢反应,在这种情况下,对氧气消耗的研究成为一种有用的工具,其中我们的(氧气吸收率)是常用的关键参数之一。用于在线的最直接的电流技术我们的确定是“动态方法”,然而,如果施加培养基溶解氧浓度的精确控制,则这种低成本策略具有一些缺点。该策略被称为“静止液相平衡法”。先前的参考技术的实现暗示使用昂贵的质量流量计和恒定的气体流速以保持溶解的氧浓度常数。提出了一种用于连续估计方法的方法,提出了采用上述两种方法的优点的探测器。在可以使用脉冲指挥的夹紧电盖的情况下,代替质量流量计,以提供脉冲宽度调制气体流动以保持溶解的氧气设定点。我们的信息可以从控制回路参数直接估计。使用光学氧探针在六种迷你反应器(10mL)系统(Liexascreen)中实现了经典的传统方法。已经建模了迷你酵母反应器气体动力学,并进行了建议的方法性能并正在进行测试。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号