首页> 外文会议>SPE Annual Technical Conference and Exhibition >Bridging The Gap Between Subsurface and Surface Disciplines - A Tool for The Modern Facilities Engineer
【24h】

Bridging The Gap Between Subsurface and Surface Disciplines - A Tool for The Modern Facilities Engineer

机译:桥接地下和表面学科之间的差距 - 这是现代设施工程师的工具

获取原文

摘要

This paper presents an unbiased Stochastic Workflow (SW), data driven, where surface and subsurface uncertainties are accounted for and their impact on Facilities design and operational decisions quantified. Unlike the traditional approach in Facilities design where typically the ‘most conservative values' are used as design input variables, the proposed workflow accounts for lifecycle variability and correlations of relevant input data. The workflow enables superior risk management and resources allocation. An example is provided, where the traditional Facilities design outcomes are compared with the Stochastic Workflow findings. Deterministic Models are established to account for the dependencies between design input variables (Static Variables, i.e. bottom hole pressure and temperature) and the desired objective (Static Results, i.e. chemical injection rate). However, in real life situations, the analyzed variables change due to subsurface and surface events with different levels of uncertainty (i.e. condensate banking, lean gas injection, water breakthrough). Stochastic algorithms are used to create Probability Distribution Functions (PDF) for all analyzed design input variables (Stochastic Variables). Stochastic Algorithms are then applied on the Deterministic Model, sampling from the previously defined probability distributions. Stochastic Results are assembled into insightful charts and used to analyze the most relevant variables and their correlations affecting the model objectives. The workflow provides an objective quantification of risks and uncertainties impacting the design and operation of the analyzed system. The deterministic design approach in the example permits for risk to be still present in 11% of cases and resources to be wasted in 77% of cases. In the revised design, based on the Stochastic Workflow, the risk and wastage are reduced to less than 1%. The associated OPEX component is reduced from USD 12 mln to USD 8 mln (-33%), expressed in Present Value terms. This paper contributes to the efforts of bridging the gap between subsurface and surface disciplines, and demonstrates the utility of integrated approach in Facilities planning, where both subsurface and surface uncertainties are accounted for. This approach contributes to the elimination of subjective decision biases (Waring, 2017), enabling superior Project and Asset Management. The proposed Stochastic Workflow is scalable and transferable, and suited to collaborative, multidisciplinary project and asset teams. Additional benefits of the Stochastic Workflow, such as improved Well and Reservoir Management (Virtual PLT) or increased system availability, are also mentioned in the paper.
机译:本文提出了一个无偏的随机工作流程(SW),数据驱动,其中表面和地下不确定因素被占据,其对设施设计和运营决策的影响量化。与设施设计中的传统方法不同,通常“最保守值”作为设计输入变量,所提出的工作流程用于相关输入数据的生命周期变异性和相关性。工作流程可实现卓越的风险管理和资源分配。提供了一个例子,其中传统设施设计结果与随机工作流程结果进行了比较。建立确定性模型,以考虑设计输入变量(静态变量,即底部孔压力和温度)之间的依赖性以及所需的目标(静态结果,即化学注射率)。然而,在现实生活中,分析的变量由于具有不同不确定性水平的地下和表面事件而变化(即冷凝水库,贫气液,水突破)。随机算法用于为所有分析的设计输入变量(随机变量)产生概率分布函数(PDF)。然后在确定性模型上应用随机算法,从先前定义的概率分布中采样。随机结果组装成洞察力图表,并用于分析影响模型目标的最相关的变量及其相关性。工作流程提供了影响影响分析系统的设计和操作的风险和不确定性的客观量化。在77%的病例中,仍然存在风险仍然存在风险的示例允许风险的确定性设计方法。在修订的设计中,基于随机工作流程,风险和浪费降低至小于1%。相关的OPEX组分从12mLn减少到8mLn(-33%),以现值术语表示。本文有助于弥补地下和表面学科之间的差距,并展示了设施规划中的综合方法的效用,其中包括地下和表面不确定性。这种方法有助于消除主观决策偏见(Waring,2017),实现卓越的项目和资产管理。所提出的随机工作流程是可扩展和可转换的,适用于协作,多学科项目和资产团队。本文还提到了随机工作流程的额外优势,例如改进的井和水库管理(虚拟PLT)或增加的系统可用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号