首页> 外文会议>International Petroleum Technology Conference >Imaging Earth's Interior Based on Adjoint Methods-Seismic Inverse Problems from Continental to Exploration Scales
【24h】

Imaging Earth's Interior Based on Adjoint Methods-Seismic Inverse Problems from Continental to Exploration Scales

机译:基于伴随方法的成像地球内部 - 从大陆探索尺度的伴随方法

获取原文

摘要

Harnessing high-performance computers and accurate numerical methods to better constrain physical properties of Earth's interior is becoming one of the most important research topics in structural and exploration seismology. We use spectral- element and adjoint methods to iteratively improve 3D subsurface images ranging from continental to exploration scales. The spectral-element method, a high-order finite-element method with the advantage of a diagonal mass matrix, is used to accurately calculate three-component synthetic seismograms in a complex 3D Earth model. An adjoint method is used to numerically compute Frechet derivatives of a misfit function based on the interaction between the wavefield for a reference Earth model and a wavefield obtained by using time-reversed differences between data and synthetics at all receivers as simultaneous sources. In combination with gradient-based optimization methods, such as a preconditioned conjugate gradient method, we are able to iteratively improve 3D images of Earth's interior and gradually minimize discrepancies between observed and simulated seismograms. Various misfit functions may be chosen to quantify these discrepancies, such as cross- correlation traveltime differences, frequency-dependent phase and amplitude anomalies as well as full-waveform differences. Various physical properties of the Earth are constrained based on this method, such as elastic wavespeeds, radial anisotropy, shear attenuation and impedance contrasts. We apply this method to study seismic inverse problems at various scales, from continental-scale seismic tomography to exploration-scale full-waveform inversion. Two examples are utilized to illustrate the applications of this method, namely, 1) application of adjoint tomography in improving 3D elastic wavespeeds of the European crust and upper mantle, and 2) application of the impedance gradient in elastic reverse-time migration for a 2D salt dome model.
机译:利用高性能计算机和准确的数值方法,以更好地限制地球内部的物理性质正在成为结构和勘探地震学中最重要的研究主题之一。我们使用光谱元素和伴随方法来迭代地改善从大陆探索尺度的3D地下图像。光谱元件方法是具有对角质量矩阵的优点的高阶有限元方法,用于精确地计算复杂的3D地球模型中的三组分合成地震图。伴随方法用于基于参考地球模型的波场与通过在所有接收器中的数据和合成之间的时间反转差异作为同时源的数据和合成之间的波菲尔德之间的相互作用来数值计算错配功能的Frechet衍生物。结合基于梯度的优化方法,例如预先处理的共轭梯度方法,我们能够迭代地改善地球内部的3D图像,并逐渐减小观察和模拟地震图之间的差异。可以选择各种错配功能来量化这些差异,例如互相关行程差异,频率相关的相位和幅度异常以及全波形差异。地球的各种物理性质基于该方法约束,例如弹性波形,径向各向异性,剪切衰减和阻抗对比度。我们应用这种方法来研究各种尺度的地震逆问题,从大陆级地震断层扫描到探索尺度全波形反转。使用两个例子来说明该方法的应用,即1)伴随地扫描在改善欧洲地壳和上部地幔的3D弹性波坯中的应用,以及2)阻抗梯度在2D中的弹性相反时迁移中的应用。盐圆顶模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号