首页> 外文会议>IEE International Conference on Computation in Electromagnetics >QUASI-STATIC FDTD SCHEME FOR ELECTRICALLY-SMALL REGIONS IN FREE SPACE AND LOSSLESS OR LOSSY PENETRABLE MEDIA
【24h】

QUASI-STATIC FDTD SCHEME FOR ELECTRICALLY-SMALL REGIONS IN FREE SPACE AND LOSSLESS OR LOSSY PENETRABLE MEDIA

机译:用于自由空间中的电小区的准静态FDTD方案,无损或有损或有损的可渗透介质

获取原文

摘要

The standard Finite-difference Time-domain (FDTD) method requires extremely small time-step sizes when modelling electrically-small regions (much smaller than a wavelength): the method can thus become impractical due to the unaffordable computation times required. This problem can be solved by implementing a quasi-static approximate version of FDTD. This approach is based on transferring the working frequency to a higher frequency, to reduce the number of time steps required. Then, the generated internal field at the higher frequency can be scaled back to the frequency of interest [1,2]. It should be noted that this approach is only valid if the size of the interacting structure in the problem space is 10 times or more smaller than the wavelength and |σ + jωε| ωε{sub}0 [2], where a and e are the conductivity and permittivity of the medium respectively, ω is the radian frequency, and ε{sub}0 is the permittivity of free space. In order to prove the validity of this quasi-static approach, a three-dimensional FDTD program was used to directly model a single homogeneous or multi-layered sphere inside a lossless or lossy problem space: this represented a biological cell under microwave irradiation, a topic of substantial current interest. The sphere was excited by a plane wave, which is replaced by an equivalent surface. The edge of the problem space was truncated by Berenger's perfectly matched layer (PML) absorbing boundary condition (ABC), with matching impedance condition (σ/ε = σ{sup}*/u, for lossless or lossy media, whereas σ/ε{sub}0 = σ{sup}*/μ{sub}0 for free space). This was solved at the interface layer for an optimum value of the g (grading) factor.
机译:当建模电 - 小区域(远小于波长)时,标准有限差分时域(FDTD)方法需要极小的时间步长,因此由于所需的未支付计算时间,该方法可以变得不切实际。通过实现FDTD的准静态近似版本,可以解决此问题。该方法基于将工作频率传送到更高频率,以减少所需的时间次数。然后,可以将较高频率的生成的内部字段缩放回感兴趣的频率[1,2]。应当注意,如果问题空间中的交互结构的大小为小于波长和|Σ+jωε|则该方法仅有效。 ωε{sub} 0 [2],其中A和E分别是介质的电导率和介电常数,ω是弧度频率,ε{sub} 0是自由空间的介电常数。为了证明这种准静态方法的有效性,三维FDTD程序用于直接在无损或有损问题空间内直接模拟单个均匀或多层面球体:这在微波辐射下表示生物细胞,a主要目前兴趣的主题。球体被平面波激发,其被等效表面代替。通过Berenger的完美匹配的层(PML)吸收边界条件(ABC)截断了问题空间的边缘,具有匹配阻抗条件(Σ/ε=Σ{sup} * / u,用于无损或有损媒体,而σ/ε {sub} 0 =Σ{sup} * /μ{sub} 0无用于空间)。这在界面层求解,以获得G(分级)因子的最佳值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号