首页> 外文会议>EAGE Conference and Exhibition >Multi-Scale Analysis of CO2 Injection as Improved Shale Gas Recovery Method
【24h】

Multi-Scale Analysis of CO2 Injection as Improved Shale Gas Recovery Method

机译:二氧化碳注射的多尺度分析改进页岩气回收方法

获取原文

摘要

This study is based on the premise that most of the trapped hydrocarbons can be produced,if we substitute them with another'acrificial'fluid that has amplified interactions with organic pore walls,such as CO2.For the presented study,a downhole shale sample is analyzed in the laboratory to predict gas storage properties such as pore-volume,pore compressibility,and gas adsorption capacity.Then a series of pressure pulse decay measurements are performed to delineate transport mechanisms and predict stress-sensitive permeability.These coefficients are obtained as the calibration parameters of a simulationbased optimization for injection and production.Simulation model considers compositional gas flow in a deformable porous media and includes a multi-continuum porosity,with organic and inorganic pores,and micro-fractures.The experimental and simulation results show that most of the injected CO2 is adsorbed in the organic matrix and are not produced back.This is because CO2 molecules have significantly larger adsorption capacity when compared to methane.The strong adsorption of CO2 improves the release of natural gas from kerogen pores.This indicates that the separation of produced CO2 will be a minimal cost.Transport in kerogen has significant pore wall effects,and includes large mass fluxes of the adsorbed molecules by the walls due to surface diffusion.In essence,the adsorbed CO2 molecules significantly influence transport of methane.The results also show core-plug permeability is stress-sensitive due to presence of micro-fractures.Forward simulation results using optimum parameters indicate that closure stress developing near the fractures could significantly control the volume of CO2 injected.This raises operational issues on when to start injecting,and how to inject CO2.Using a simulation study of a production well with single-fracture,we show that fracture closure stress develops rapidly and production rate becomes a slave of the fracture geo-mechanics,e.g.,strength of the proppants and the level of proppant embedment.
机译:本研究是基于的前提是,大部分的捕获烃的可以产生,如果我们与已扩增的与有机的孔壁,如CO2.For所呈现的研究的相互作用another'acrificial'fluid代替它们,井下页岩样品是在实验室中以预测气体储存性能如孔隙体积,孔的可压缩性,和气体吸附capacity.Then一系列压力脉冲衰减测量被执行以描出的传输机制和预测应力敏感permeability.These系数作为分析得到用于注射和production.Simulation模型simulationbased优化的校准参数考虑了可变形的多孔介质组成的气流和包含多连续的孔隙度,与有机和无机的孔隙,和微fractures.The实验和仿真结果表明,大部分的注入的CO 2被吸附在有机基质和不产生back.This是因为CO 2分子具有SI当相比methane.The CO2的强吸附gnificantly更大的吸附能力提高了的天然气从干酪根pores.This释放指示产生的CO 2的分离将是干酪根的最小cost.Transport具有显著孔壁效果,并且包括大通过由于表面diffusion.In本质壁中的吸附分子的质量通量,被吸附的CO 2分子显著影响methane.The的传输结果还表明岩心渗透率应力敏感由于微fractures.Forward仿真结果存在使用最佳参数指示闭合应力裂缝邻近显影可以显著控制CO2 injected.This的体积提高上何时开始注射,并如何注入CO2.Using生产的模拟研究以及与单骨折业务问题,我们表明,裂缝闭合应力的迅速发展和生产率成为断裂地理力学的从,例如,strengt这些支撑物的H和支撑剂嵌入的水平。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号