首页> 外文会议>National SBIR/STTR conference >Field-directed Self-assembly of Multifunctional Magnetic-Plasmonic Core-shell Nanoparticles with Applications to Photonics
【24h】

Field-directed Self-assembly of Multifunctional Magnetic-Plasmonic Core-shell Nanoparticles with Applications to Photonics

机译:多功能磁性等离子体芯 - 壳纳米粒子的现场定向自组装,具有在光子型的应用

获取原文

摘要

Interest in the manipulation and self-assembly of magnetic nanoparticles has grown in recent years due to advances in particle synthesis and functionalization, which have led to a proliferation of applications that include the bio molecular transport, drug targeting, gene trans fection, bioseparation, microfluidic mixers and bio and chemical sensors, among others. However, despite the growing application of magnetic nanoparticles, many fundamental aspects of their collective behavior remain unknown. In this presentation, we use computational modeling to demonstrate the self-assembly of magnetic core-shell particles into chain structures and the control of this process by carefully choosing particle properties and an applied field. Our analysis takes into account several competitive effects, including the induced magnetic dipole-dipole interactions, the electrostatic repulsion between particles based on DLVO theory, Brownian dynamics, Van der Waals interaction and a steric repulsive force caused by surfactant-surfactant contact. The model is used to study the self-assembly (chaining) of magnetic-plasmonic Fe_3O_4@Au core-shell nanoparticles that are confined to a nanochannel. Computational photonic analysis is used to compute the optical behavior of 1D multiparticle chains. Moreover, an analysis is performed to study the local profiles of thermal loss and electric field enhancement between adjacent nanoparticles. The ability to self-assemble the particles with tunable field enhancement holds potential for fundamental studies of light-matter interactions as well as applications of bio and chemical sensing.
机译:由于颗粒合成和官能化的进展导致包括生物分子转运,药物靶向,基因转移,生物分离,微流体,生物分离,生物分离,生物分离,微流体,近年来,近年来磁性纳米粒子的操纵和自组装的兴趣已经生长。混合器和生物和化学传感器等。然而,尽管磁性纳米粒子的应用越来越多,但它们的集体行为的许多基本方面仍然是未知的。在本介绍中,我们使用计算建模来证明磁芯 - 壳颗粒的自组装通过仔细选择颗粒性能和施加的田间来证明链结构和控制该过程。我们的分析考虑了几种竞争效果,包括诱导的磁性偶极偶极相互作用,基于DLVO理论,布朗动力学,范德华相互作用和由表面活性剂 - 表面活性剂接触引起的空间排斥力之间的静电排斥。该模型用于研究限制在纳米通道的Au核 - 壳纳米颗粒的自组装(链接)。计算光子分析用于计算1D多粒子链的光学行为。此外,进行分析以研究相邻纳米颗粒之间的局部损失和电场增强的局部轮廓。通过可调谐场增强自动组装颗粒的能力具有对光物质相互作用的基本研究以及生物和化学传感的应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号