首页> 外文会议>Annual Meeting of the Association for Information Science and Technology >Computational Social Science Using Topic Modeling: Analyzing Patients' Values Using a Large Hospital Survey
【24h】

Computational Social Science Using Topic Modeling: Analyzing Patients' Values Using a Large Hospital Survey

机译:使用主题建模的计算社会科学:使用大型医院调查分析患者价值观

获取原文

摘要

In this paper, we explore new approaches for combining manual and automatic content analysis. We compare three approaches to topic modelling: Latent Semantic Analysis (LSA), Latent Dirichlet Allocation (LDA), and Hierarchical Dirichlet Process (HDP). We applied all three approaches to study a corpus of 21,085 free-response answers to questions from the Hospital Consumer Assessment of Healthcare Providers and Systems (HCAHPS) survey. We built topic models using the algorithms. Our preliminary results indicate that LSA and LDA yielded more useful results than HDP. We thematically analyzed the topic models and found similarities and differences in the factors that influenced patients' satisfaction with doctors and nurses.
机译:在本文中,我们探索了组合手动和自动内容分析的新方法。我们将三种方法与主题建模进行比较:潜在语义分析(LSA),潜在的Dirichlet分配(LDA)和分层Dirichlet进程(HDP)。我们应用了所有三种方法,以研究医院消费者和系统(HCAHPS)调查的医院消费者评估的问题21,085个免费答复答案。我们使用算法构建了主题模型。我们的初步结果表明,LSA和LDA产生的结果比HDP更有用。我们主题分析了主题模型,并发现了影响患者对医生和护士的满意度的因素的相似之处和差异。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号