首页> 外文会议>International Congress on Advances in Nuclear Power Plants >Supercritical Carbon Dioxide Brayton Power Conversion Cycle Design for Optimized Battery-Type Integral Reactor System
【24h】

Supercritical Carbon Dioxide Brayton Power Conversion Cycle Design for Optimized Battery-Type Integral Reactor System

机译:优化电池型积分电抗器系统超临界二氧化碳Brayton电源转换循环设计

获取原文

摘要

Supercritical carbon dioxide (SCO_(2)) promises a high power conversion efficiency of the recompression Brayton cycle due to its excellent compressibility reducing the compression work at the bottom of the cycle and to a higher density than helium or steam decreasing the component size. Therefore, the high SCO_(2) Brayton cycle efficiency as high as 45 percent furnishes small sized nuclear reactors with economical benefits on the plant construction and maintenance. A 23 MWth BORIS (Battery Optimized Reactor Integral System) is being developed as a multi-purpose reactor. BORIS, an integral-type optimized fast reactor with an ultra long life core, is coupled to the SCO_(2) Brayton cycle needing less room relative to the Rankine steam cycle because of its smaller components. The SCO_(2) Brayton cycle of BORIS consists of a 16 MW turbine, a 32 MW high temperature recuperator, a 14 MW low temperature recuperator, an 11 MW precooler and 2 and 2.8 MW compressors. Entering six heat exchangers between primary and secondary system at 19.9 MPa and 663 K, the SCO_(2) leaves the heat exchangers at 19.9 MPa and 823 K. The promising secondary system efficiency of 45 percent was calculated by a theoretical method in which the main parameters include pressure, temperature, heater power, the turbine's, recuperators' and compressors' efficiencies, and the flow split ratio of SCO_(2) going out from the low temperature recuperator. Test loop SOLOS (Shell-and-tube Overall Layout Optimization Study) is utilized to develop advanced techniques needed to adopt the shell-and-tube type heat exchanger in the secondary loop of BORIS by studying the SCO_(2) behavior from both thermal and hydrodynamic points of view. Concurrently, a computational fluid dynamics (CFD) code analysis is being conducted to develop an optimal analytical method of the SCO_(2) turbine efficiency having the parameters of flow characteristics of SCO_(2) passing through buckets of the turbine. These simultaneous experimental and analytical methods for designing the secondary loop of BORIS can supply an optimal solution to developing a new battery-type integral nuclear power reactor system.
机译:超临界二氧化碳(SCO_(2))由于其优异的压缩性降低了循环底部的压缩工作和比氦气或蒸汽更高的密度而降低了元件尺寸,因此引起了重新压缩布雷顿循环的高功率转换效率。因此,高于45%的高SCO_(2)布雷顿循环效率为小型核反应堆提供了植物建设和维护的经济效益。 23 MWTH Boris(电池优化的反应器积分系统)作为多功能电抗器开发。鲍里斯,具有超长寿命核心的一体式优化的快电抗器,耦合到SCO_(2)布雷顿循环,因为其具有较小的部件,所以需要更少的速度蒸汽循环。 Boris的SCO_(2)Brayton循环由16 MW涡轮机组成,32 MW高温恢复器,14兆瓦低温恢复器,11 MW预冷器和2和2.8 MW压缩机。在19.9MPa和663 k之间进入初级和次级系统之间的六个热交换器,SCO_(2)将热交换器留在19.9MPa和823 K.中有可能的45%的二级系统效率通过其中主要方法计算参数包括压力,温度,加热器功率,涡轮机,恢复器'和压缩机的效率,以及从低温恢复器外出的SCO_(2)的流量分流比。测试回路唯一(壳管整体布局优化研究)用于通过研究来自热量的SCO_(2)行为来开发采用Boris中的次循环中的壳管式热交换器所需的先进技术。流体动力学观点。同时,正在进行计算流体动力学(CFD)码分析以开发具有通过涡轮机的铲斗的SCO_(2)的流动特性参数的SCO_(2)涡轮机效率的最佳分析方法。这些同时设计Boris二次环路的实验和分析方法可以为开发新的电池型整体核电反应堆系统提供最佳解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号