首页> 外文会议>SPIE Conference on Free-space Laser Communication Technologies >Challenges of developing resonant cavity photon-counting detectors at 1064nm
【24h】

Challenges of developing resonant cavity photon-counting detectors at 1064nm

机译:在1064nm处开发共振腔光节探测器的挑战

获取原文
获取外文期刊封面目录资料

摘要

Deep Space Optical Communications (DSOC)) impose challenging requirements on detector sensitivity and bandwidth [1]. The current state-of-the art of high-repetition rate, high-power lasers recommends using near-infrared (NIR) 1064nm wavelengths for specific DSOC tasks [2]. Large photonic arrays with integrated beam acquisition, tracking and/or communication capabilities, and smart pixel architecture should allow the implementation of more reliable and robust DSOC systems. Integration of smart pixel technology for parallel data read, acquisition and processing is currently available in silicon. Therefore it would be desirable to monolithically integrate the photodetectors with the electronics. However, silicon has a weak absorption at 1064nm. One elegant approach to increase its absorption efficiency is to trap the photons inside the silicon using the cavity resonance effect (resonant cavity enhancement or RCE). We present in this paper the challenges of developing resonant cavity single-photon detector arrays for applications to DSOC. The metrics of the main process parameters to fabricate resonant cavity detectors is analyzed and critical process steps are developed and evaluated. We conclude that such detector arrays are feasible using current state-of-the-art CMOS technology, provided that suitable process control protocols are developed. We report a 10X performance enhancement at NIR wavelengths for the first generation of resonant cavity single-photon detector prototypes, less than 150ps timing performance in photonstarved mode and 20-30ps for multi-photon hits.
机译:深空光通信(DSOC))对检测器灵敏度和带宽的挑战要求施加挑战性要求[1]。最新的高重复率,高功率激光器的最新技术建议使用近红外(NIR)1064nm波长用于特定的DSOC任务[2]。具有集成光束采集,跟踪和/或通信功能以及智能像素架构的大型光子阵列应允许实现更可靠和强大的DSOC系统。硅读取,采集和处理的智能像素技术集成目前在硅中可用。因此,希望将光电探测器与电子产品单独集成。然而,硅在1064nm处具有弱吸收。提高其吸收效率的一种优雅方法是使用腔共振效应(共振腔增强或RCE)捕获硅内的光子。我们在本文中展示了开发用于DSOC的谐振腔单光子探测器阵列的刺激腔单光子探测器阵列。分析了用于制造谐振腔探测器的主要过程参数的度量,并开发和评估关键的工艺步骤。我们得出结论,如果开发了合适​​的过程控制协议,这种探测器阵列是可行的使用当前的最先进的CMOS技术。我们在第一代谐振腔单光子探测器原型中报告了在NIR波长的10倍的性能增强,在光子间模式下小于150ps的定时性能和用于多光子击中的20-30PS。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号