首页> 外文会议>International Astronautical Congress >Microgravity Experiments and Numerical Simulations on the Combustion of Single Oxygen Droplets in Hydrogen
【24h】

Microgravity Experiments and Numerical Simulations on the Combustion of Single Oxygen Droplets in Hydrogen

机译:微沉降实验与氢气液滴燃烧的数值模拟

获取原文
获取外文期刊封面目录资料

摘要

In liquid rocket propulsion, liquid oxygen/liquid hydrogen (LOX/LH_2) can be preferred propellants owing to the resulting high specific impulse. Typically in this case the fuel (LH_2) enters the combustion chamber in pre-vaporized gaseous state and the oxidizer as droplets in the liquid state (LOX). The vaporization of the LOX droplets and the formation of a combustible mixture occur in the combustion chamber. These physical processes are directly connected to the chemical processes of combustion. That a single droplet is the basic element of spray combustion motivates microgravity experiments to be conducted in the Bremen Drop Tower to investigate the combustion process of a single oxygen droplet in a gaseous hydrogen environment. Microgravity conditions are useful to remove natural convection, ensuring spherical symmetry to more easily reveal the key physical phenomena. Experiments are planned for pressures up to 52 bar, which corresponds to supercritical conditions. The nominal, initial temperature of the LOX droplet and surrounding hydrogen gas will be 77 K. The droplet will be ignited by a laser induced plasma spark and the combustion will be observed by shadowgraphy, schlieren optics, OH-radical chemiluminescence as well as temporal and spatially resolved OH-planar laser induced fluorescence (OH-PLIF) diagnostics. Furthermore the experiments are compared to the results of numerical simulations developed in parallel. Of primary interest are the inverted character of the system with the fuel as the homogenous phase and the oxidizer as the dispersed phase as well as the transition from the ignition to the quasi-steady combustion flame. Preliminary simulations suggest the formation of two pre-mixed flames after ignition. Subsequently a third diffusion flame appears between the pre-mixed flames, which eventually die out. The paper describes the cryogenic experimental setup and the optical diagnostics. Initial results from the numerical simulations regarding the ign
机译:在液体火箭推进中,由于由此产生的高特异性脉冲,液氧/液态氢气(LOX / LH_2)可以是优选的推进剂。通常在这种情况下,燃料(LH_2)在预蒸发的气态和氧化剂中进入燃烧室,作为液态(LOX)中的液滴。 LOX液滴的蒸发和形成可燃混合物的形成在燃烧室中。这些物理过程直接连接到燃烧的化学过程。单滴是喷雾燃烧的基本元素促使在不来梅滴塔中进行的微匍匐实验,以研究气态氢气环境中的单个氧液滴的燃烧过程。微匍匐条件可用于去除自然对流,确保球形对称以更容易地揭示关键的物理现象。计划用于高达52巴的压力进行实验,其对应于超临界条件。 LOX液滴和周围氢气的标称初始温度将是77k。液滴通过激光诱导的等离子体火花点燃,燃烧将通过影像,Schlieren光学,OH-自由基化学发光以及时间和时间观察燃烧空间分辨的OH平面激光诱导荧光(OH-PLIF)诊断。此外,将实验与并联开发的数值模拟的结果进行比较。主要兴趣是用燃料作为均匀相和氧化剂作为分散相的系统的倒置特征以及从点火到准稳定燃烧火焰的过渡。初步模拟表明点火后形成了两个预混火焰。随后,在预混合的火焰之间出现第三扩散火焰,最终消失。本文描述了低温实验设置和光学诊断。关于IMG的数值模拟的初始结果

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号