首页> 外文会议>Computing in Cardiology Conference >Atrial fibrillation screening through combined timing features of short single-lead electrocardiograms
【24h】

Atrial fibrillation screening through combined timing features of short single-lead electrocardiograms

机译:通过短单导联心电图的组合计时功能进行房颤筛查

获取原文
获取外文期刊封面目录资料

摘要

Atrial fibrillation (AF) is the most common cardiac arrhythmia, as well as a growing healthcare burden worldwide. It is often asymptomatic and usually starts with very brief episodes, thus making its early detection an interesting challenge. For that purpose, the present work introduces a novel method exploiting the variability presented both by ventricular and atrial activities reflected on the surface electrocardiogram (ECG). Thus, time series from the RR intervals and the fibrillatory waves morphology contained by the TQ intervals are first generated and, then, their regularity is estimated making use of the Coefficient of Sample Entropy (COSEn). The collected information is finally combined through a multi-class support vector machine (SVM) approach to discern among short episodes of AF, normal sinus rhythm (NSR) and other rhythms (OR). The algorithm has been validated in the context of the Phy-sioNet Computing in Cardiology Challenge 2017, thus reporting a global F1measure of 0.73 for the training set and 0.71 for the testing group. Nonetheless, to evaluate the method in a common scenario for previous works, the widely used MIT-BIH AF database has also been considered. A notably higher F1score of 0.87 has been provided in this case. The significantly different balance between the number of AF, NSR and OR recordings in both databases could justify the obtained outcomes.
机译:心房颤动(AF)是最常见的心律不齐,并且在全球范围内医疗保健负担日益增加。它通常是无症状的,通常以非常短暂的发作开始,因此使其早期发现成为一个有趣的挑战。为此,本工作介绍了一种新方法,该方法利用了由表面心电图(ECG)上反映的心室和心房活动所引起的变异性。因此,首先根据RR间隔和TQ间隔所包含的颤动波形态生成时间序列,然后利用样本熵系数(COSEn)估计它们的规律性。最后,通过多类支持向量机(SVM)方法将收集到的信息进行组合,以区分AF的短发作,正常窦性心律(NSR)和其他心律(OR)。该算法已在2017年心脏病学挑战赛的Phy-sioNet计算中得到验证,因此报告了全球F 1 训练集的得分为0.73,测试组的得分为0.71。但是,为了在以前工作的通用场景中评估该方法,还考虑了广泛使用的MIT-BIH AF数据库。明显更高的F 1 在这种情况下,得分为0.87。两个数据库中AF,NSR和OR记录的数量之间的显着不同可以证明所获得的结果是合理的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号