首页> 外文会议>International Conference on Intelligent Engineering and Management >Ensemble method to predict impact of student intelligent quotient and academic achievement on placement
【24h】

Ensemble method to predict impact of student intelligent quotient and academic achievement on placement

机译:集合方法预测学生智能商和学术成果对安置的影响

获取原文

摘要

The study's aim is to see how academic achievement and student Intelligence Quotient influence placement. This paper will attempt to predict whether a student's intelligence quotient or academic score plays a significant role in placement. On a dataset of 193 students, we used a machine learning algorithm to compare the impact of student intelligence, behavior, and academic achievement on placement. We have used a Voting Classifier architecture to predict and classify the probability of a student being placed or not. The motivating force behind this research was to figure out why a group of students scoring the same marks in the same branch studying under the supervision of the same faculty are not able to fulfill the demands of an organization in order to be employed. The aim of this research was to combine conceptually different machine learning classifiers and predict the probability of a student being hired using a majority vote or the average expected probabilities. A classifier like this can be useful for balancing out the weaknesses of a group of models that are all performing well. Experiments show that student intelligence and attitude play a significant role in the recruiting process.
机译:该研究的目的是了解学术成果和学生智能商如何影响安置。本文将试图预测学生的智商商品或学术分数在安置方面发挥着重要作用。在193名学生的数据集上,我们使用了机器学习算法来比较学生智能,行为和学术成就的影响。我们使用了投票分类器架构来预测和分类所放置的学生的概率。这项研究背后的激励力量是弄清楚为什么一群学生在同一教师的监督下,在同一部门的同一分支机构中得分相同的标志无法满足组织的要求才能受雇。本研究的目的是将概念上不同的机器学习分类器结合起来并预测学生使用多数票或平均预期概率雇用的概率。这样的分类器可以有用,可用于平衡所有表现良好的模型的弱点。实验表明,学生情报和态度在招聘过程中发挥着重要作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号