首页> 外文会议>AIAA SciTech Forum and Exposition >Quantification of surface-near porosity in additively manufactured aluminum brackets using X-ray microcomputed tomography
【24h】

Quantification of surface-near porosity in additively manufactured aluminum brackets using X-ray microcomputed tomography

机译:使用X射线微型断层扫描定量含有铝支架的表面接近孔隙率

获取原文

摘要

The combination of additive manufacturing (AM) and topology optimization facilitates the design and production of lightweight structural components, e.g. using AlSi10Mg, while reducing cost and enhancing product performance in aerospace applications. Nevertheless, the relatively larger surface area of topology-optimized parts also favors an increased occurrence of defects like surface-near pores. Pores in load-carrying areas may profoundly influence the component's mechanical performance, hence extensive non-destructive evaluations (NDE) are mandatory to predict the effect of defects in aluminum AM components. In this paper we non-destructively analyze cutout specimens of topology-optimized engine brackets and in-process test coupons that were manufactured from AlSilOMg by selective laser melting (SLM) using X-ray microcomputed tomography (XCT). We investigate the respective parts in high scanning resolutions between 1.25 μm and 20 μm voxel size to extract pore size distributions and distance from surface. Using a standard clustering approach we were able to differentiate between small, spherical gas and larger, irregular Lack-of-Fusion (LOF) pores that show a clear spatial distribution from the part surface. Smaller gas pores show an average diameter of ca. 40 μm while LOF pores are larger (ca. 160 μm). Importantly, LOF pores in the analyzed sample are found in a wide range of distances from the surface (ca. 10 - 430 μm). This distribution is the consequence of the applied contour scan mode to minimize surface roughness while increasing the level of surface-near porosity. Since surface-near pores play a major role in fatigue performance of structural parts, this study provides valuable microstructural information for subsequent analyses concerning the effect of defects in aluminum AM components.
机译:添加剂制造(AM)和拓扑优化的组合有助于轻质结构部件的设计和生产,例如,使用ALSI10MG,同时降低了在航空航天应用中的成本和提高产品性能。然而,拓扑优化部件的相对较大的表面积也有利于增加了表面近孔的缺陷的发生。承载领域的毛孔可能深入影响组件的机械性能,因此广泛的非破坏性评估(NDE)是强制性的,以预测铝AM组分中缺陷的影响。在本文中,我们通过选择性激光熔化(SLM)使用X射线微型断层扫描(XCT),无损分析拓扑优化发动机支架和内部试样的拓扑优化发动机支架和内部测试所需试样。我们研究了在1.25μm和20μm的体素尺寸的高扫描分辨率中的各个部件,以提取孔径分布和距离表面的距离。使用标准聚类方法,我们能够区分小,球形气体和较大,不规则的熔体(LOF)孔,其显示出从部件表面的透明空间分布。较小的气体孔显示CA的平均直径。 40μm,而LOF孔较大(约160μm)。重要的是,分析的样品中的LOF孔隙在距离表面(CA.10-430μm)的宽范围内。该分布是所施加的轮廓扫描模式的结果,以最小化表面粗糙度,同时增加表面近孔隙度的水平。由于表面近孔隙在结构部件的疲劳性能下发挥着重要作用,因此该研究提供了有价值的微观结构信息,以便随后分析铝AM组分缺陷的效果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号