首页> 外文会议>SPIE OPTO Conference >Simulation method for large subwavelength devices in infrared imaging systems and comparison with experiment
【24h】

Simulation method for large subwavelength devices in infrared imaging systems and comparison with experiment

机译:红外成像系统中大型亚波长器件的仿真方法及与实验的比较

获取原文

摘要

In the field of uncooled Long Wave Infra Red (LWIR) imaging, CMOS compatible bolometers technology is being more and more popular, exhibiting precise temperature measurement at moderate cost. The price of this technology is proportional to the number of components produced per wafer, leading to a shrinkage of the pixel. Enhancing the resolution level of the focal plane array (FPA) requires an improvement of the point spread function (PSF) of the optical system, leading to more and more complex aspheric lenses and an increased cost of imaging systems. We propose to add a sub-wavelength blade to the existing parts of the imaging system to improve the image quality in applications with a constraint budget. The main function of such a subwavelength blade should be to control the phase of the light into an optical system to compensate optical aberrations. A cost effective solution consists to make such devices using microelectronics based collective fabrication process. The main difficulty is to predict the subwavelength blade behavior within an optical system that is to say combining millimeter sized optical components that are modeled using ray-tracing or electromagnetic simulations. In this paper we present the results obtained from an effort to simulate, fabricate and characterize an all-dielectric subwavelength blade. Our method is based on Fourier Modal Method and Angular Spectrum Method coupled with ray tracing to simulate subwavelength optics into an optical system and the comparison between our simulations results and experiments shows a good agreement.
机译:在未冷却的长波红外(LWIR)成像领域,与CMOS兼容的测辐射热计技术正越来越普及,以适中的成本提供了精确的温度测量。这项技术的价格与每个晶圆生产的组件数量成正比,从而导致像素缩小。增强焦平面阵列(FPA)的分辨率水平需要改进光学系统的点扩展功能(PSF),从而导致越来越复杂的非球面透镜和成像系统成本的增加。我们建议在成像系统的现有部分中增加一个亚波长刀片,以在预算有限的应用中提高图像质量。这种亚波长叶片的主要功能应该是控制进入光学系统的光的相位,以补偿光学像差。具有成本效益的解决方案包括使用基于微电子的集体制造工艺来制造此类设备。主要困难在于预测光学系统内的亚波长叶片行为,也就是说,将使用射线追踪或电磁模拟建模的毫米大小的光学组件进行组合。在本文中,我们介绍了通过模拟,制造和表征全电介质亚波长叶片而获得的结果。我们的方法是基于傅里叶模态方法和角谱方法,结合射线追踪,将亚波长光学器件模拟到光学系统中,并且我们的模拟结果与实验结果之间的比较显示出很好的一致性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号