首页> 外文会议>ISES biennial solar world congress >Using TRNSYS Simulation to Optimize the Design of a Solar Water Distillation System
【24h】

Using TRNSYS Simulation to Optimize the Design of a Solar Water Distillation System

机译:使用TRNSYS仿真优化太阳能蒸馏系统的设计

获取原文
获取外文期刊封面目录资料

摘要

We present the modeling, TRNSYS simulation, and parametric analysis of a solar water distillation system based on a humidification-dehumidification cycle. The thermal processes that constitute the cycle are carried out in devices designed for maximum individual efficiency. In order to achieve this, it is necessary for the evaporative process (in which an air current is humidified) to happen at the highest temperature attainable without boiling. This maximizes the amount of vapor that can be carried by the air current. This process is performed in a vertical packed column, where a stream of hot water falls as a current of hot air ascends in countercurrent and directly contacts the water. The air at the exit of the tower is saturated with vapor at the same temperature as the entering water, thus maximizing the amount of moisture carried. The hot and humid air then passes through a condenser that releases heat to the atmosphere, bringing air to nearly ambient temperature and maximizing distillate condensation. In order to achieve the previous, it is necessary for the thermal capture and storage system to work with thermal oil, an insulated storage tank, and evacuated-tube solar collectors. The system must maintain a steady oil temperature of 110°C. We propose a condenser based on heat pipes and with excess heat transfer area for dumping heat to the atmosphere, in order for the condensation temperature to be as close as possible to atmospheric. The efficiency of the distiller is substantially increased by forcing the process to occur between the described temperature limits, not unlike what happens in the power cycles of heat engines. The thermal oil transfers energy to the air and water currents through two heat exchangers, and the insulated storage tank makes it possible to operate the system at night for as long as sufficiently hot oil is still available. A flow control system regulates the temperature reached by the water that flows to the evaporation tower. We used the simulation platform TRNSYS to model this system, including the evaporation tower and condenser. Using the climatic conditions of the city of Chihuahua, Mexico, we performed a parametric study of the system and determined the effect of varying the number of solar collectors, volume of the thermal tank, and flow rate of water. We simulated the behavior of the system over a year of continued operation, measuring the amount of condensate produced during that period. The objective of this analysis was to determine the variation of distillate production, in kilograms of water distilled per year per square meter of solar collector, and per cubic meter of thermal tank. This was used to determine the optimal characteristics of the proposed distillation system.
机译:我们介绍了基于加湿-除湿循环的太阳能蒸馏系统的建模,TRNSYS仿真和参数分析。构成循环的热处理过程是在设计用于最大程度提高个人效率的设备中进行的。为了实现这一点,蒸发过程(其中气流被加湿)必须在可获得的最高温度下发生而不会沸腾。这使气流可以携带的蒸气量最大化。此过程在立式填充塔中进行,其中随着热气流逆流上升,热水流下降,并直接与水接触。塔的出口处的空气与进入的水温度相同,蒸汽中的蒸汽饱和,因此使所携带的水分最大化。然后,湿热的空气通过冷凝器,该冷凝器将热量释放到大气中,使空气接近环境温度,并使馏出物冷凝最大化。为了达到上述目的,热捕获和存储系统必须与导热油,绝缘的存储箱和真空管式太阳能集热器一起工作。系统必须保持110°C的稳定油温。我们提出了一种基于热管的冷凝器,该冷凝器具有多余的传热面积,用于将热量散发到大气中,以使冷凝温度尽可能接近大气。通过迫使过程在所述的温度极限之间发生,蒸馏器的效率大大提高,这与热机的功率循环中发生的情况没有什么不同。导热油通过两个热交换器将能量传递到空气和水流中,并且绝缘的储油罐使得夜间运行该系统成为可能,只要仍有足够的热油可用即可。流量控制系统调节流向蒸发塔的水所达到的温度。我们使用仿真平台TRNSYS对该系统进行建模,包括蒸发塔和冷凝器。利用墨西哥奇瓦瓦市的气候条件,我们对该系统进行了参数研究,并确定了改变太阳能收集器数量,储热箱容量和水流量的影响。我们在连续运行的一年中模拟了系统的行为,并测量了在此期间产生的冷凝水量。该分析的目的是确定馏出物产量的变化,即每平方米太阳能集热器和每立方米热能箱每年蒸馏出的水千克数。这被用来确定所提出的蒸馏系统的最佳特性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号