首页> 外文会议>IEEE Region 10 Conference >Monocular Depth Level Estimation for Breast Self-Examination (BSE) using RGBD BSE Dataset
【24h】

Monocular Depth Level Estimation for Breast Self-Examination (BSE) using RGBD BSE Dataset

机译:使用RGBD BSE数据集进行乳房自检(BSE)的单眼深度估计

获取原文

摘要

Up until now, there had been no existing literature in depth level estimation algorithm for BSE using a simple camera that provides quantitative accuracy. They can only show their effectiveness thru graphs. In this paper, we present the RGBD BSE dataset and a depth level quantization scheme that provides an avenue for training a Machine learning model and calculating its hit rate. We were able to show that the previous study's accuracy is 30.33%. Moreover, adding a simple shadow area as feature and changing the Machine Learning prediction model to Support Vector Machine boosts the algorithm's accuracy to 58.83%.
机译:到目前为止,使用提供定量精度的简单相机,BSE的深度估计算法没有现有文献。他们只能通过图表显示其有效性。在本文中,我们介绍了RGBD BSE数据集和深度量化方案,提供了一种培训机器学习模型并计算其命中率的大道。我们能够表明以前的研究的准确性为30.33%。此外,将简单的阴影区域添加为特征和改变机器学习预测模型,以支持向量机提升算法的准确性为58.83%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号