首页> 外文会议>IEEE International Symposium on Circuits and Systems >A Crossbar Array of Analog-Digital-Hybrid Volatile Memory Synapse Cells for Energy-Efficient On-Chip Learning
【24h】

A Crossbar Array of Analog-Digital-Hybrid Volatile Memory Synapse Cells for Energy-Efficient On-Chip Learning

机译:用于节能片上学习的模拟数字混合易失性存储器突触单元的横杆阵列

获取原文

摘要

Conventional-silicon-transistor-based Volatile Memory (VM) synapse has been proposed as an alternative to Non Volatile Memory (NVM) synapse in crossbar-array-based neuromorphic/ in-memory-computing systems. Here, through SPICE simulations, we have designed an analog-digital-hybrid Volatile Memory Synapse Cell (VMSC) for such a crossbar array of VM synapses. In our VMSC, the transistor synapse stores nearly analog values of weight. But the other transistors, which carry out the weight update for the transistor synapse, are designed following the principle of static CMOS logic (digital), making our design energy-efficient. Through system-level study, we report classification accuracy, speed, and energy consumption for on-chip learning on the VMSC-based crossbar designed here, using popular machine learning data sets. We show that despite a low value of capacitance of our MOSFET synapses (low area-footprint hence), the weights are retained in them long enough for our VMSC-based crossbar to exhibit comparable accuracy as a NVM-synapse-based crossbar.
机译:已经提出了基于常规的硅晶体管的挥发性存储器(VM)突触作为基于横杆阵列的神经形状/内存计算系统中的非易失性存储器(NVM)突触的替代。在这里,通过Spice仿真,我们设计了一个模拟数字混合易失性存储器Synapse突触单元(VMSC),用于这种VM突触的横杆阵列。在我们的VMSC中,晶体管Synapse存储几乎模拟重量值。但是,除静态CMOS逻辑(数字)的原理之后,设计了晶体管Synaps的重量更新的其他晶体管,使我们的设计能够实现节能。通过系统级研究,我们报告在这里设计的基于VMSC的横杆上的片上学习的分类准确性,速度和能耗,使用流行的机器学习数据集。我们表明,尽管我们的MOSFET突触的电容低(低区域 - 足迹),但重量足够长,足以使基于VMSC的横梁具有与基于NVM-Synapse的横杆相当的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号