首页> 外文会议>International astronautical congress;IAC 2008 >MISSION AND NAVIGATION DESIGN FOR THE 2009 MARS SCIENCE LABORATORY MISSION
【24h】

MISSION AND NAVIGATION DESIGN FOR THE 2009 MARS SCIENCE LABORATORY MISSION

机译:2009年火星科学实验室的任务与导航设计。

获取原文

摘要

NASA's Mars Science Laboratory mission will launch the next mobile science laboratory to Mars in the fall of 2009 with arrival at Mars occurring in the summer of 2010. A heat shield, parachute, and rocket-powered descent stage, including a sky crane, will be used to land the rover safely on the surface of Mars. The direction of the atmospheric entry vehicle lift vector will be controlled by a hypersonic entry guidance algorithm to compensate for entry trajectory errors and counteract atmospheric and aerodynamic dispersions. The key challenges for mission design are (1) develop a launch/arrival strategy that provides communications coverage during the Entry, Descent, and Landing phase either from an X-band direct-to-Earth link or from a Ultra High Frequency link to the Mars Reconnaissance Orbiter for landing latitudes between 30 deg North and 30 deg South, while satisfying mission constraints on Earth departure energy and Mars atmospheric entry speed, and (2) generate Earth-departure targets for the Atlas V-541 launch vehicle for the specified launch/arrival strategy. The launch/arrival strategy employs a 30-day baseline launch period and a 27-day extended launch period with varying arrival dates at Mars. The key challenges for navigation design are (1) deliver the spacecraft to the atmospheric entry interface point (Mars radius of 3522.2 km) with an inertial entry flight path angle error of ±0.20 deg (3σ), (2) provide knowledge of the entry state vector accurate to ±2.8 km (3σ) in position and ±2.0 m/s (3σ) in velocity for initializing the entry guidance algorithm, and (3) ensure a 99% probability of successful delivery at Mars with respect to available cruise stage propellant. Orbit determination is accomplished via ground processing of multiple complimentary radiometric data types: Doppler, range, and Delta-Differential One-way Ranging (a Very Long Baseline Interferometry measurement). The navigation strategy makes use of up to five interplanetary trajectory correction maneuvers to achieve entry targeting requirements. The requirements for cruise propellant usage and atmospheric entry targeting and knowledge are met with ample margins.
机译:美国国家航空航天局(NASA)的火星科学实验室任务将在2009年秋季向火星发射下一个移动科学实验室,并于2010年夏天抵达火星。用于将火星车安全降落在火星表面。大气进入车辆升力矢量的方向将由高超音速进入引导算法控制,以补偿进入轨迹误差并抵消大气和空气动力扩散。任务设计的主要挑战是(1)制定一种发射/到达策略,该策略在进入,下降和着陆阶段从X波段直接对地链路或从超高频链路到地面的通信范围提供通信覆盖。火星侦察轨道器,用于在北纬30度到南纬30度之间着陆,同时满足任务对地球离场能量和火星大气进入速度的限制,并且(2)为指定发射的Atlas V-541发射车生成离地目标/到达策略。发射/到达策略采用30天的基准发射期和27天的延长发射期,且到达火星的日期有所不同。导航设计面临的主要挑战是:(1)将航天器以惯性进入飞行路径角度误差为±0.20度(3σ)送入大气进入界面点(火星半径为3522.2 km),(2)提供有关进入的知识状态向量的位置精确到±2.8 km(3σ),速度精确到±2.0 m / s(3σ),用于初始化进入制导算法,并且(3)相对于可用巡航阶段,确保在火星上成功交付的概率为99%推进剂。轨道确定是通过对多种互补的辐射数据类型进行地面处理来完成的:多普勒,距离和增量差单向测距(非常长的基线干涉测量)。导航策略最多使用五次行星际轨迹校正操作来达到进入目标的要求。巡航推进剂的使用,进入大气层的目标和知识的要求得到了充分的保证。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号