首页> 外文会议>168th Technical Meeting of the Rubber Division, ACS(American Chemical Society) >Small Indentations of Rubber Blocks: Effect of Size and Shape of Block and of Lateral Compression (Paper No. 44)
【24h】

Small Indentations of Rubber Blocks: Effect of Size and Shape of Block and of Lateral Compression (Paper No. 44)

机译:橡胶块的小凹痕:块的尺寸和形状以及侧向压缩的影响(第44号论文)

获取原文

摘要

Many gaskets and seals consist of a long rubber strip or thin-walled ring, placed on a flat rigid surface and indented by a flat-ended rigid indenter. We have examined their resistance to small indentations by FEA. They are treated as infinitely-long elastic blocks of rectangular cross-section, resting on a rigid frictionless base. The indentation stiffness is calculated for various ratios of indenter tip width to block width and to block thickness, using two restraint conditions on the outer surfaces: frictionless walls (zero outwards displacement), as for a gasket placed in a recess; or stress-free, as for a gasket with no lateral restraint. For an infinitely-wide and infinitely-thick block, the theoretical resistance to indentation is zero. For comparison, the indentation stiffness is calculated for cylindrical rubber blocks of varied radius and thickness, indented by a flat-ended cylindrical indenter. In this case the result for an infinitely-large block is finite. A second study treats indentation of a rubber block, pre-compressed in the surface plane. Biot showed that the indentation stiffness of a half-space becomes zero at a critical compression, about 33% for equi-biaxial compression and 44% for plane strain compression, for both a neo-Hookean and a Mooney-Rivlin elastic solid. FEA calculations were made of the indentation stiffness of neo-Hookean blocks of various sizes, pre-compressed to various degrees. The results are compared with Biot's result. In an Appendix, the critical degree of compression is calculated for a morerealistic strain energy function than either the neo-Hookean or the Mooney-Rivlin approximation.
机译:许多垫圈和密封件由长的橡胶条或薄壁环组成,放置在平坦的刚性表面上,并由平坦端部的刚性压头压入。我们已经检查了FEA对小凹痕的抵抗力。它们被视为无限长的矩形横截面的弹性块,位于刚性无摩擦底座上。对于压头尖端宽度与块体宽度和块体厚度的各种比率,使用在外表面上的两个约束条件来计算压入刚度:无摩擦壁(向外位移为零),如放置在凹槽中的垫圈;或无应力,例如无侧向约束的垫圈。对于无限宽且无限厚的块,理论上的压痕阻力为零。为了进行比较,计算了半径和厚度变化的圆柱形橡胶块的压痕刚度,该橡胶块由一个平端的圆柱形压头压入。在这种情况下,无限大块的结果是有限的。第二项研究处理的是在表面预压缩的橡胶块的压痕。毕奥特(Biot)表明,对于新霍克式和门尼-里夫林弹性固体,在临界压缩下,半空间的压痕刚度变为零,等双轴压缩约为33%,平面应变压缩约为44%。 FEA计算是对各种尺寸的预压缩到不同程度的新胡克木块的压痕刚度进行的。将结果与比奥的结果进行比较。在附录中,临界压缩程度的计算需要更多 逼真的应变能函数,而不是新霍克或穆尼-里夫林近似。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号