首页> 外文会议>Three-Dimensional Microscopy: Image Acquisition and Processing IV >Restoration of three-dimensional quasi-binary images from confocal microscopy and its a
【24h】

Restoration of three-dimensional quasi-binary images from confocal microscopy and its a

机译:共聚焦显微镜恢复三维准二元图像及其方法

获取原文
获取外文期刊封面目录资料

摘要

Abstract: For the analysis of learning processes and the underlying changes of the shape of excitatory synapses (spines), 3-D volume samples of selected dendritic segments are scanned by a confocal laser scanning microscope. For a more detailed analysis, such as the classification of spine types, binary images of higher resolution are required. Simple threshold methods have disadvantages for small structures because the microscope point spread function (PSF) causes a darkening and a spread. The direction-dependent PSF leads to shape errors. To reconstruct structures and edge positions with a resolution smaller than one voxel a parametric model for the dendrite and the spines is created. In our application we use the known tree-like structure of the nerve cell as a- priori information. To create the model, simple geometrical elements (cylinders with hemispheres at the ends) are connected. The model can be adapted for size and position in sub-pixel domain. To estimate the quadratic error between the microscope image and the model, the model is sampled with the same resolution as the microscope image and convolved by the microscope PSF. During an iterative process the parameters of the model are optimized. In contrast to other pixel-based methods. the number of variable parameters is much slower. The influence of small deviations in the microscope image (caused by the inhomogeneous biological materials) is reduced. !14
机译:摘要:为了分析学习过程和兴奋性突触(脊柱)的形状的潜在变化,使用共聚焦激光扫描显微镜对选定的树突节段的3-D体积样本进行扫描。对于更详细的分析(例如,脊柱类型的分类),需要更高分辨率的二进制图像。简单的阈值方法对于小型结构具有缺点,因为显微镜点扩散函数(PSF)会导致变暗和扩散。方向相关的PSF会导致形状误差。为了重建分辨率小于一个体素的结构和边缘位置,创建了枝晶和刺的参数模型。在我们的应用中,我们使用神经细胞的已知树状结构作为先验信息。要创建模型,需要连接简单的几何元素(端部为半球的圆柱)。该模型可以适合于子像素域中的大小和位置。为了估计显微镜图像和模型之间的二次误差,以与显微镜图像相同的分辨率对模型进行采样,并通过显微镜PSF对其进行卷积。在迭代过程中,对模型的参数进行了优化。与其他基于像素的方法相反。可变参数的数量要慢得多。减少了显微镜图像中微小偏差(由不均匀的生物材料引起)的影响。 !14

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号