首页> 外文会议>International Conference on Computational Science >Fully-Asynchronous Fully-Implicit Variable-Order Variable-Timestep Simulation of Neural Networks
【24h】

Fully-Asynchronous Fully-Implicit Variable-Order Variable-Timestep Simulation of Neural Networks

机译:神经网络的全异步全隐式可变阶可变时步仿真

获取原文
获取外文期刊封面目录资料

摘要

State-of-the-art simulations of detailed neurons follow the Bulk Synchronous Parallel execution model. Execution is divided in equidistant communication intervals, with parallel neurons interpolation and collective communication guiding synchronization. Such simulations, driven by stiff dynamics or wide range of time scales, struggle with fixed step interpolation methods, yielding excessive computation on intervals of quasi-constant activity and inaccurate interpolation of periods of high volatility in solution. Alternative adaptive timestepping methods are inefficient in parallel executions due to computational imbalance at the synchronization barriers. We introduce a distributed fully-asynchronous execution model that removes global synchronization, allowing for long variable timestep interpolations of neurons. Asynchronicity is provided by point-to-point communication notifying neurons' time advancement to synaptic connectivities. Timestepping is driven by scheduled neuron advancements based on interneuron synaptic delays, yielding an exhaustive yet not speculative execution. Benchmarks on 64 Cray XE6 compute nodes demonstrate reduced number of interpolation steps, higher numerical accuracy and lower runtime compared to state-of-the-art methods. Efficiency is shown to be activity-dependent, with scaling of the algorithm demonstrated on a simulation of a laboratory experiment.
机译:详细的神经元的最新模拟遵循Bulk Synchronous Parallel执行模型。执行以等距的通信间隔进行划分,并行神经元插值和集体通信引导同步。这种模拟是由刚性动力学或较大的时间尺度驱动的,采用固定步长插值方法,在准恒定活动的间隔上进行过多的计算,并且对溶液中高波动周期的插值不准确。由于同步障碍处的计算不平衡,替代的自适应时间步长方法在并行执行中效率低下。我们介绍了一种分布式的完全异步执行模型,该模型消除了全局同步,从而允许对神经元进行长时间可变的时间步插值。通过点对点通信来通知神经元向突触连接的时间进展,从而提供异步性。时间间隔是由基于神经元突触延迟的计划神经元前进驱动的,产生了详尽而又不是推测性的执行。与最新方法相比,在64个Cray XE6计算节点上的基准测试表明,插值步骤数量减少,数值精度更高,运行时间更低。效率被证明是与活动有关的,在实验室实验的模拟中证明了算法的扩展性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号