首页> 外文会议>Annual international battery seminar and exhibit >Electrochemical Mechanism of ε-Keggin-Type POMs for Li-Ion and K-Ion Batteries
【24h】

Electrochemical Mechanism of ε-Keggin-Type POMs for Li-Ion and K-Ion Batteries

机译:锂离子和钾离子电池用ε-Keggin型POM的电化学机理

获取原文

摘要

Polyoxometalates (POMs) are a class of materials, which find application in many fields. Properties such as ion conductivity, redox activity, good thermal stability, and ability to form complex with a multitude of cations make them interesting in many applications, including catalysts, coatings, membranes, films, electrochemical devices, pigments, analytical reagents, etc. [1]. Among different type of POMs, the Keggin type structure is one which found application in Li-ion batteries. Materials like (NH4)1.5H8.5(Zn3Mo12O40).6H2O (Mo-Zn-O) and (NH4)2.1H7.5(Mn2.2Mo12O40).4H2O (Mo-Mn-O) have been used as cathode, in the potential region 1.5-4V Li/Li+, displaying large capacities of 270 mAh/g and 269 mAh/g, respectivery[2]. In this work the hydrothermal method has been used to obtain cubic (NH4)2H1.5(Fe3Mo12O40).5.25H2O (Mo-Fe-O) POM with a=b=c=19.042 ? 0.001? (S.G: Fd-3m), which is isostructural to the above mentioned Mo-Mn-O. The samples Mo-Fe-0 have been tested in a 3-electrode cell configuration, where metallic Li or K are applied as a reference and counter electrodes. In the low potential region (0.01-3V), this material can reach a lithiation/delithiation capacity of 1355 mAh/g, 1638 mAh/g, 1392 mAh/g and 1334 mAh/g at the current densities of 200 mA/g, 300 mA/g, 500 mA/g and 1000 mAg, respectively. In potassium system, the first discharge capacity is much lower: at the current densities of 200 mA/g, 300 mA/g, 500 mAg and 1000 mA/g the capacity is 345 mAh/g, 410 mAh/g, 292 mAh/g and 357 mAh/g, respectively, and cycling stability is also worse. In both Li-ion and K-ion systems the degradation of the initial cubic structure is observed. The amorphisation of the initial structure during lithiation (potassiation) is accompanied by the conversion reaction, with production of α-LiFeO2 and metallic Mo in case of Li-ion half-cell and metallic Fe - in case of K-ion half-cell. The mechanism was investigated using in situ synchrotron radiation diffraction (ALBA, Barcelona) and in situ XAS (PETRAIII, Hamburg). This study gives understanding on what happens inside the rechargeable cell during the electrochemical reaction. Mo-Fe-O POM shows a mixed intercalation-conversion mechanism in a Li-half cell in the potential region 0.01 - 3 V vs. Li/Li+.
机译:多金属氧酸盐(POM)是一类材料,可在许多领域中得到应用。诸如离子电导率,氧化还原活性,良好的热稳定性以及与多种阳离子形成络合物的能力等特性使它们在许多应用中引起关注,包括催化剂,涂料,膜,膜,电化学装置,颜料,分析试剂等。[ 1]。在不同类型的POM中,Keggin型结构是一种已在锂离子电池中应用的结构。像(NH4)1.5H8.5(Zn3Mo12O40).6H2O(Mo-Zn-O)和(NH4)2.1H7.5(Mn2.2Mo12O40).4H2O(Mo-Mn-O)这样的材料已被用作阴极。电位区域为1.5-4V Li / Li +,分别显示了270 mAh / g和269 mAh / g的大容量[2]。在这项工作中,水热法已用于获得立方(NH4)2H1.5(Fe3Mo12O40).5.25H2O(Mo-Fe-O)POM,其a = b = c =19.042≤m。 0.001? (S.G:Fd-3m),其与上述Mo-Mn-O同构。样品Mo-Fe-0已在3电极电池配置中进行了测试,其中金属Li或K被用作参比电极和对电极。在低电势区域(0.01-3V)中,该材料在200 mA / g的电流密度下可达到1355 mAh / g,1638 mAh / g,1392 mAh / g和1334 mAh / g的锂化/去锂化能力,分别为300 mA / g,500 mA / g和1000 mAg。在钾系统中,首次放电容量要低得多:在200 mA / g,300 mA / g,500 mAg和1000 mA / g的电流密度下,容量为345 mAh / g,410 mAh / g,292 mAh / g g和357 mAh / g,循环稳定性也更差。在锂离子和钾离子系统中,都观察到初始立方结构的退化。锂化(钾化)过程中初始结构的非晶化伴随着转化反应,如果是锂离子半电池,则生成α-LiFeO2和金属Mo,如果是钾离子半电池,则生成金属Fe。使用原位同步加速器辐射衍射(ALBA,巴塞罗那)和原位XAS(PETRAIII,汉堡)研究了该机理。这项研究使人们了解了在电化学反应过程中可充电电池内部发生了什么。 Mo-Fe-O POM在相对于Li / Li +的0.01-3 V电位区域中的Li-half电池中显示出混合的嵌入转换机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号