首页> 外文会议>AIAA Aerospace Sciences Meeting;AIAA SciTech Forum >Large eddy simulations of a premixed jet combustor using flamelet-generated manifolds: effects of heat loss and subgrid-scale models
【24h】

Large eddy simulations of a premixed jet combustor using flamelet-generated manifolds: effects of heat loss and subgrid-scale models

机译:使用火焰产生歧管的预混射流燃烧室的大涡模拟:热损失和亚网格规模模型的影响

获取原文

摘要

Large eddy simulations of a turbulent premixed jet flame in a confined chamber were conducted using the flamelet-generated manifold technique for chemistry tabulation. The configuration is characterized by an off-center nozzle having an inner diameter of 10 mm, supplying a lean methane-air mixture with an equivalence ratio of 0.71 and a mean velocity of 90 m/s, at 573 K and atmospheric pressure. Conductive heat loss is accounted for in the manifold via burner-stabilized flamelets and the subgrid-scale (SGS) turbulence-chemistry interaction is modeled via presumed probability density functions. Comparisons between numerical results and measured data show that a considerable improvement in the prediction of temperature is achieved when heat losses are included in the manifold, as compared to the adiabatic one. Additional improvement in the temperature predictions is obtained by incorporating radiative heat losses. Moreover, further enhancements in the LES predictions are achieved by employing SGS models based on transport equations, such as the SGS turbulence kinetic energy equation with dynamic coefficients. While the numerical results display good agreement up to a distance of 4 nozzle diameters downstream of the nozzle exit, the results become less satisfactory along the downstream, suggesting that further improvements in the modeling are required, among which a more accurate model for the SGS variance of progress variable can be relevant.
机译:使用用于化学制表的小火焰生成歧管技术,对密闭室内的湍流预混合射流火焰进行了大涡模拟。该构造的特征在于,内径为10 mm的偏心喷嘴在573 K和大气压下供应当量比为0.71,平均速度为90 m / s的稀甲烷气混合物。传导热损失是通过燃烧器稳定的小火焰在歧管中解决的,子网格规模(SGS)的湍流-化学相互作用是通过假定的概率密度函数建模的。数值结果和实测数据之间的比较表明,与绝热相比,当歧管中包含热量损失时,可以大大提高温度的预测。通过合并辐射热损失,可以进一步提高温度预测。此外,通过使用基于输运方程的SGS模型(例如具有动态系数的SGS湍流动能方程),可以进一步提高LES预测。虽然数值结果在喷嘴出口下游4个喷嘴直径的距离处显示出良好的一致性,但结果沿下游变得不太令人满意,这表明需要对建模进行进一步的改进,其中需要更精确的SGS方差模型进度变量的值可能是相关的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号