首页> 外文会议>World biomaterials congress >Photothermal effect of gold nanorod (GNR) for glioblastoma treatment in 3D tumorenvironment-mimicked hydrogel platform
【24h】

Photothermal effect of gold nanorod (GNR) for glioblastoma treatment in 3D tumorenvironment-mimicked hydrogel platform

机译:金纳米棒(GNR)在模拟3D肿瘤环境的水凝胶平台中治疗胶质母细胞瘤的光热效应

获取原文

摘要

Glioblastoma multiforme (GBM), which is the most common and aggressive malignant primary brain tumor with low median survival rate about 15 months on average. Remained infiltrative tumor cells are mainly involved in high recurrence rate. They destroy the extracellular matrix components by infiltration. In this process, glioma cancer stem cells (GSCs) are highly involved. The conventional cancer therapies such as radiotherapy and chemotherapy are futile attempts to inhibit the vigorous infiltration of GSCs because of their resistance against to these therapies. Because of their resistance to conventional cancer therapy, new strategies have been studied to restrain their destructive infiltration. Hyperthermia is one of the efficient methods to attack tumor cells and reduce migration and invasion as well as degeneration of brain tissues. It is expected to block the invasion of tumor cells below the threshold for coagulation and denaturation of proteins with intracellular heat stress, around 41-47°C. In this approach, nanoparticles could be used to make specific and effective target on brain tumor tissues and enhance of efficacy of drug delivery. In particular, shape-controlled gold nanorod (GNR) is well known to have photothermal effect with near-infrared region (MR; 650-900 nm) laser, It is relatively simple and well-established nanoparticle with various aspect ratios, enabling tunable absorption of wavelength. Furthermore, it can be kept from aggregating in serum once injected with long circulation time after polyethylene glycol (PEG) treatment on surface. Here, we investigated the effect of GNR-mediated photothermal treatment on the invasiveness of patient-derived glioma cells. We synthesized PEG-protected, CGKRK peptide and Alexa 555-conjugated GNR that exhibit the property of photothermal heat generation under NIR spectrum as well as tumor targetability. To perform systemically, we used a three-dimensional (3D) tumor model consisting of collagen-hyaluronic acid (HA) hydrogel tumor sphere (figure 1 A), which mimic the physiologically relevant brain tumor microenvironment where highly express HA in the brain tumor tissue. In our experiment, we optimized the concentration of GNR and duration time of NIR to minimize the cytotoxicity of glioma cells (figure 1C, 1D). Figure 1. (A) Schematic diagram of sphere formed glioma cancer stem cells (GSCs)-embedded collagen-hyaluronic acid (HA) hydrogel with gold nanorod (GNR) treatment. (B) Scanning electron microscope (SEM) image of fabricated GNR. Size is in 60nm wide with aspect ratio 4:1. (C) Temperature rise by time according to concentration of GNR treatment and GNR type whether targeting peptide attached (FP) or not (F). Generally higher temperature rise is shown with targeting peptide attached GNR. (D) Cell viability test by concentration of GNR treatment within GNR-uptake time in GSCs. More uptake time and higher GNR concentration induce less cell viability. We treated GNR 10-200 μg/ml for less than 12 hours. We demonstrated the induction of cell death by temperature rise (figure 2A) and inhibition of invasion of GSCs by GNR treatment with NIR laser (figure 2B). Therefore, we could propose a simple but more effective therapeutic approach to target and locally heat GSCs except on normal cells with multi-functional gold nanorods. Figure 2. (A) Cytotoxicity of GSCs by temperature growth without GNR. It is shown surface-death of cells by increasing temperature. Scale bar=100μm (B) Inhibition of GSC invasion with GNR. Cells treated GNR with NIR laser (red arrow) shows inhibition of invasion compared DPBS treated control. Scale bar=100μm.
机译:多形性胶质母细胞瘤(GBM),是最常见和最具侵略性的恶性原发性脑肿瘤,平均生存率较低,平均约15个月。剩余的浸润性肿瘤细胞主要参与高复发率。它们通过渗透破坏细胞外基质成分。在这个过程中,神经胶质瘤癌干细胞(GSC)参与度很高。常规的癌症疗法,例如放射疗法和化学疗法,由于它们对GSC的抵抗力,因此抑制GSC的强烈浸润是徒劳的尝试。由于它们对常规癌症疗法的抵抗力,已研究了抑制其破坏性浸润的新策略。热疗是攻击肿瘤细胞并减少脑组织迁移和侵袭以及变性的有效方法之一。预期可在41-47°C左右阻止具有细胞内热应激的蛋白质的凝固和变性阈值以下的肿瘤细胞入侵。在这种方法中,纳米颗粒可用于在脑肿瘤组织上形成特异性和有效的靶标,并增强药物递送的功效。特别是,众所周知,形状控制的金纳米棒(GNR)具有近红外区(MR; 650-900 nm)激光的光热效应。它是相对简单且成熟的纳米粒子,具有各种长宽比,可实现可调吸收的波长。此外,一旦在表面进行了聚乙二醇(PEG)处理后注入较长的循环时间,就可以防止其在血清中聚集。在这里,我们调查了GNR介导的光热处理对患者源性神经胶质瘤细胞侵袭性的影响。我们合成了PEG保护的,CGKRK肽和Alexa 555偶联的GNR,它们在NIR光谱下具有光热产生的特性,并具有肿瘤靶向性。为了系统地进行研究,我们使用了由胶原透明质酸(HA)水凝胶肿瘤球组成的三维(3D)肿瘤模型(图1 A),该模型模拟了与生理相关的脑肿瘤微环境,该环境在脑肿瘤组织中高度表达HA 。在我们的实验中,我们优化了GNR的浓度和NIR的持续时间,以最大程度地降低神经胶质瘤细胞的细胞毒性(图1C,1D)。图1.(A)球状形成的神经胶质瘤癌干细胞(GSC)包埋的胶原-透明质酸(HA)水凝胶的示意图,并用金纳米棒(GNR)处理。 (B)制成的GNR的扫描电子显微镜(SEM)图像。尺寸为60nm宽,长宽比为4:1。 (C)根据GNR处理的浓度和GNR类型而随时间的温升,无论靶向肽附着(FP)还是不附着(F)。通常,靶向肽连接的GNR显示出更高的温升。 (D)通过在GSC中的GNR摄取时间内的GNR处理浓度来进行细胞生存力测试。更长的摄取时间和更高的GNR浓度会导致细胞活力降低。我们处理GNR 10-200μg/ ml少于12小时。我们证明了通过温度升高诱导细胞死亡(图2A)和通过用NIR激光进行GNR处理来抑制GSC的入侵(图2B)。因此,除了具有多功能金纳米棒的正常细胞外,我们可以提出一种简单但更有效的治疗方法来靶向和局部加热GSC。图2.(A)在没有GNR的情况下,温度升高对GSC的细胞毒性。通过升高温度显示细胞的表面死亡。比例尺=100μm(B)用GNR抑制GSC入侵。与DPBS处理的对照组相比,用NIR激光处理的GNR细胞(红色箭头)显示出对浸润的抑制作用。比例尺=100μm。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号