首页> 外文会议>ASME annual dynamic systems and control conference >ITERATIVE-CONTROL-BASED HIGH-SPEED DIRECT MASK FABRICATION VIA ULTRASONIC-VIBRATION-ASSISTED MECHANICAL PLOWING
【24h】

ITERATIVE-CONTROL-BASED HIGH-SPEED DIRECT MASK FABRICATION VIA ULTRASONIC-VIBRATION-ASSISTED MECHANICAL PLOWING

机译:超声振动辅助机械打磨基于迭代控制的高速直接面膜制造

获取原文

摘要

Mechanical indentation and plowing is one of the most widely used methods in probe-based nanolithography. Compared to other probe-based nanolithography techniques such as the Dip-pen and the milliped, mechanical plowing is not restrictive to conductive materials and/or soft materials. However, like other probe-based nanolithgraphy techniques, the low-throughput has hindered the implementation of this technique in practices. The fabrication throughput, although can be increased via parallel-probe, is ultimately limited by the tracking precision of the probe relative to the sample during the plowing process. In this paper, a new iterative learning control technique is proposed and utilized to account for the adverse effects encountered in high-speed, large-range mechanical plowing nanolithography, including the hysteresis, the vibrational dynamics, and the cross-axis dynamics-coupling effects. Moreover, vertical (normal) ultrasonic vibration of the cantilever is introduced during the fabrication process to improve the fabrication quality. This approach is implemented to directly fabricate patterns on a mask with a tungsten layer deposited on a silicon dioxide substrate. The experimental results demonstrated that a relatively large-size pattern of four grooves (20 μm in length) can be fabricated at a high-speed of ~5 mm/sec, with the line width and line depth at ~95 nm and 2 nm, respectively. A fine pattern of the word 'NANO' is also achieved at the speed of~5 mm/sec. Such a high-speed direct lithography of mask with nanoscale line width and depth points the use of mechanical-plowing technique in strategic-important applications such as mask lithography for semiconductor industry.
机译:机械压痕和耕作是基于探针的纳米光刻技术中使用最广泛的方法之一。与其他基于探针的纳米光刻技术(例如浸笔和the)相比,机械犁耕并不局限于导电材料和/或软材料。但是,像其他基于探针的纳米光刻技术一样,低通量阻碍了该技术在实践中的实施。尽管可以通过平行探针提高制造产量,但最终在耕作过程中最终会受到探针相对于样品的跟踪精度的限制。本文提出了一种新的迭代学习控制技术,并将其用于解决高速大范围机械犁削纳米平版印刷术中遇到的不利影响,包括磁滞,振动动力学和跨轴动力学耦合效应。 。此外,在制造过程中引入了悬臂的垂直(正常)超声振动,以提高制造质量。实施该方法以在掩模上直接制造图案,在该掩模上沉积有沉积在二氧化硅衬底上的钨层。实验结果表明,可以在〜5 mm / sec的高速下制作相对较大尺寸的四个凹槽(长度为20μm)的图案,线宽和线深分别为〜95 nm和2 nm,分别。还可以以〜5 mm / sec的速度获得单词“ NANO”的精细图案。这种具有纳米级线宽和深度的掩模的高速直接光刻技术指出了在重要的战略应用中使用机械刻绘技术的重要性,例如半导体工业的掩模光刻技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号