首页> 外文会议>International conference on thin film physics and applications >A novel remote plasma sputtering technique for depositing high- performance optical thin films
【24h】

A novel remote plasma sputtering technique for depositing high- performance optical thin films

机译:一种用于沉积高性能光学薄膜的新型远程等离子体溅射技术

获取原文
获取外文期刊封面目录资料

摘要

This paper describes a novel remote plasma sputtering technique for depositing optical thin films. This technology is based on generating intensive plasma remotely from the target and then magnetically steering the plasma to the target to realize the sputter deposition. It overcomes several of inherent limitations in conventional sputtering techniques and realizes the fiilly uniform erosion over the surface of the target and less target poison. This allows a uniform reaction in the plasma phase when performing reactive sputtering, leading to the formation and deposition of material with a uniform stoichiometry and gives pseudo-independence of target current and voltage. This pseudo-independence offers a great deal of flexibility with regard to the control of growth conditions and film properties, the benefits include control of stress, very low deposition rates for ultra thin films. By remote reactive sputtering, dense metal-oxide optical thin films (SiO_2, Ta_2O_5, Nb_2O_5) with a high deposition rate, excellent optical properties are achieved. High process stability shows an excellent time terminating accuracy for multilayer coating thickness control. Typically, thin film thickness control to <±1% is accomplished simply using time. The multilayer coating, including anti-reflection, dichroic mirror and 2μm laser mirrors are presented.
机译:本文介绍了一种新颖的远程等离子体溅射技术,用于沉积光学薄膜。该技术基于远离靶标产生密集的等离子体,然后将等离子体磁导向靶标以实现溅射沉积。它克服了常规溅射技术中的一些固有局限性,并实现了靶材表面的均匀均匀腐蚀和较少的靶材毒物。当进行反应性溅射时,这允许等离子体相中的均匀反应,导致具有均匀化学计量的材料的形成和沉积,并给出目标电流和电压的假独立性。这种伪独立性在控制生长条件和薄膜特性方面提供了很大的灵活性,其好处包括控制应力,超薄膜的极低沉积速率。通过远程反应溅射,具有高沉积速率的致密金属氧化物光学薄膜(SiO_2,Ta_2O_5,Nb_2O_5),可获得优异的光学性能。高工艺稳定性显示出优异的时间终止精度,可控制多层涂层的厚度。通常,只需使用时间即可将薄膜厚度控制在<±1%之内。介绍了多层涂层,包括抗反射,二向色镜和2μm激光镜。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号