首页> 外文会议>SAE World congress >PHEV Energy Management Strategies at Cold Temperatures with Battery Temperature Rise and Engine Efficiency Improvement Considerations
【24h】

PHEV Energy Management Strategies at Cold Temperatures with Battery Temperature Rise and Engine Efficiency Improvement Considerations

机译:考虑电池温度升高和发动机效率提高的考量的低温PHEV能量管理策略

获取原文

摘要

Limited battery power and poor engine efficiency at cold temperature results in low plug in hybrid vehicle (PHEV) fuel economy and high emissions. Quick rise of battery temperature is not only important to mitigate lithium plating and thus preserve battery life, but also to increase the battery power limits so as to fully achieve fuel economy savings expected from a PHEV. Likewise, it is also important to raise the engine temperature so as to improve engine efficiency (therefore vehicle fuel economy) and to reduce emissions. One method of increasing the temperature of either component is to maximize their usage at cold temperatures thus increasing cumulative heat generating losses. Since both components supply energy to meet road load demand, maximizing the usage of one component would necessarily mean low usage and slow temperature rise of the other component. Thus, a natural trade-off exists between battery and engine warm-up. This paper compares energy management strategies for a power-split PHEV for their ability to warm -up the battery and the engine, and ultimately the resulting fuel economy. The engine model predicts engine fuel rate as a function of engine utilization history and starting temperature, apart from speed and torque. The battery temperature rise model is a function of battery utilization. Engine and battery utilization is varied by changing the control parameter - wheel power demand at which the engine turns ON. The paper analyses the sensitivity of fuel and electrical energy consumption to engine and battery temperature rise, for different driving distances and driver aggressivenes
机译:电池电量有限,在低温下发动机效率低下,导致混合动力汽车(PHEV)的燃油经济性低且排放量高。电池温度的快速升高不仅对于减轻锂镀层并因此保留电池寿命很重要,而且对于提高电池功率极限以充分实现PHEV所期望的燃油经济性节省也很重要。同样,升高发动机温度以提高发动机效率(因此降低车辆燃油经济性)并减少排放也很重要。提高任一组件温度的一种方法是在低温下最大化其使用量,从而增加累积的热量产生损失。由于两个组件都提供能量以满足道路负载需求,因此最大化一个组件的使用量必然意味着另一组件的使用量较低且温度上升缓慢。因此,在电池和发动机预热之间存在自然的折衷。本文比较了动力分配式插电式混合动力汽车的能量管理策略对电池和发动机的预热能力,以及最终的燃油经济性。除了速度和扭矩外,发动机模型还根据发动机使用历史和启动温度来预测发动机燃油率。电池温升模型是电池利用率的函数。通过更改控制参数-发动机打开时的车轮功率需求,可以改变发动机和电池的利用率。本文分析了在不同的行驶距离和驾驶员攻击性下,燃料和电能消耗对发动机和电池温度升高的敏感性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号