首页> 外文会议>47th ACM/IEEE Design Automation Conference >Classification rule learning using subgroup discovery of cross-domain attributes responsible for design-silicon mismatch
【24h】

Classification rule learning using subgroup discovery of cross-domain attributes responsible for design-silicon mismatch

机译:使用子域发现负责设计硅不匹配的跨域属性进行分类规则学习

获取原文

摘要

Due to the magnitude and complexity of design and manufacturing processes, it is unrealistic to expect that models and simulations can predict all aspects of silicon behavior accurately. When unexpected behavior is observed in the post-silicon stage, one desires to identify the causes and consequently identify the fixes. This paper studies one formulation of the design-silicon mismatch problem. To analyze unexpected behavior, silicon behavior is partitioned into two classes, one class containing instances of unexpected behavior and the other with rest of the population. Classification rule learning is applied to extract rules to explain why certain class of behavior occurs. We present a rule learning algorithm that analyzes test measurement data in terms of design features to generate rules, and conduct controlled experiments to demonstrate the effectiveness of the proposed approach. Results show that the proposed learning approach can effectively uncover rules responsible for the design-silicon mismatch even when significant noises are associated with both the measurement data and the class partitioning results for capturing the unexpected behavior.
机译:由于设计和制造过程的规模和复杂性,期望模型和仿真可以准确预测硅行为的各个方面是不现实的。在后硅阶段中观察到意外行为时,人们希望找出原因,并因此找出解决办法。本文研究了设计硅不匹配问题的一种表述。为了分析意外行为,将硅行为分为两类,一类包含意外行为的实例,另一类包含其余的实例。应用分类规则学习来提取规则,以解释为什么发生某些类别的行为。我们提出一种规则学习算法,该算法根据设计特征分析测试测量数据以生成规则,并进行受控实验以证明所提出方法的有效性。结果表明,即使当大量噪声与测量数据和用于捕获意外行为的类划分结果相关联时,所提出的学习方法也可以有效地发现导致设计硅不匹配的规则。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号