首页> 外文会议>IEEE Radar Conference >A Robust Real-time Human Activity Recognition method Based on Attention-Augmented GRU
【24h】

A Robust Real-time Human Activity Recognition method Based on Attention-Augmented GRU

机译:一种基于注意力增强GRU的强大实时人类活动识别方法

获取原文

摘要

We proposed a robust real-time human activity recognition method based on attention-augmented Gated Recurrent Unit (GRU) using radar range profile, namely Attention-Augmented Sequential Classification (AASC). We use attention mechanism to capture the temporal relationships inherent in the range profile signatures. Therefore, our model can learn long-term temporal correlation of human activity without increasing the depth or width of recurrent neural network. The attention weights are adaptively generated using features extracted by the GRU recurrent neural network. Finally, attention-augmented features are classified by Multi-layer perceptrons. Real data of picking, boxing, rasing leg and rasing hand are collected to evaluate our model. It is shown that the proposed method outperforms the conventional GRU in recognition accuracy and robustness, demonstrating the superiority in real-time activity recognition task.
机译:我们提出了一种基于使用雷达范围曲线的注意力增强门控复发单元(GRU)的稳健的实时人类活动识别方法,即注意力增强顺序分类(AASC)。 我们使用注意机制来捕获范围配置文件签名中固有的时间关系。 因此,我们的模型可以学习人类活动的长期时间相关性而不增加经常性神经网络的深度或宽度。 使用由GRU复发神经网络提取的特征自适应地生成注意力。 最后,通过多层的Perceptrons对注意力增强功能进行分类。 收集采摘,拳击,叉腿和叉刺手的真实数据来评估我们的模型。 结果表明,该方法以识别精度和稳健性为传统的GRU优于传统的GRU,展示了实时活动识别任务中的优越性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号