首页> 外文会议>Journal of Rare Earths vol.24 Spec. Issue March 2006 >Influence of Thermal Conductivity on Interface Shape during Growth of Sapphire Crystal Using a Heat-Exchanger-Method
【24h】

Influence of Thermal Conductivity on Interface Shape during Growth of Sapphire Crystal Using a Heat-Exchanger-Method

机译:换热器方法对蓝宝石晶体生长过程中导热系数的影响

获取原文

摘要

The internal radiative contributed on heat transfer will enhance the heat transport inside the crystalline phase during growth the transparent sapphire crystal using a heat-exchanger-method (HEM) . The artificially enhanced thermal conductivity of the solid to include the internal radiation effect was used in the present study. Numerical simulations using FIDAP were performed to investigate the effects of the thermal conductivity on the shape of the melt-crystal interface, the temperature distribution, and the velocity distribution. Heat transfer (including radiation) from the furnace to the crucible and heat extraction from the heat exchanger can be modeled by the convection boundary conditions. In the present study, we focus on the influence of the conductivity on the shape of the melt-crystal interface. Therefore, the effect of the others growth parameters during the HEM crystal growth was neglected. For the homogenous conductivity (k_m = k_s = k), the maximum convexity decreases as k increases and the rate of maximum convexity increases for a higher conductivity is less abrupt than for a lower conductivity. For the no homogenous conductivity (k_m ≠ k_s), the higher solid's k_s generates lower maximum convexity and the variation in maximum convexity was less abrupt for the different melt's k_m. The maximum convexity decreases slightly as the enhance conductivity of the sapphire crystal increases. The effects of the anisotropic conductivity of the sapphire crystal were also addressed. The maximum convexity of the melt-crystal interface decreases when the radial conductivity (k_(sr)) of the crystal increases. The maximum convexity increases as the axial conductivity (k_(sz)) of the crucible increases.
机译:使用热交换方法(HEM)在透明蓝宝石晶体生长期间,对热传递有贡献的内部辐射将增强结晶相内部的热传递。在本研究中使用了人为提高的固体导热系数,以包括内部辐射效应。使用FIDAP进行了数值模拟,以研究热导率对熔体晶体界面形状,温度分布和速度分布的影响。从炉子到坩埚的热传递(包括辐射)和从热交换器的热提取可以通过对流边界条件进行建模。在本研究中,我们集中于电导率对熔体-晶体界面形状的影响。因此,忽略了HEM晶体生长期间其他生长参数的影响。对于均一的电导率(k_m = k_s = k),最大凸度随k的增加而减小,并且最大凸度的增加率与较高电导率相比不像较低电导率那样突然。对于没有均匀电导率(k_m≠k_s)的情况,较高的固体的k_s产生较低的最大凸度,并且对于不同的熔体k_m,最大凸度的变化不那么突然。随着蓝宝石晶体电导率的增加,最大凸度略有减小。蓝宝石晶体的各向异性电导率的影响也得到了解决。当晶体的径向电导率(k_(sr))增加时,熔体-晶体界面的最大凸度减小。最大凸度随着坩埚的轴向电导率(k_(sz))的增加而增加。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号