首页> 外文会议>Algorithmic Number Theory >Low-Dimensional Lattice Basis Reduction Revisited
【24h】

Low-Dimensional Lattice Basis Reduction Revisited

机译:再谈低维晶格简化

获取原文
获取外文期刊封面目录资料

摘要

Most of the interesting algorithmic problems in the geometry of numbers are NP-hard as the lattice dimension increases. This article deals with the low-dimensional case. We study a greedy lattice basis reduction algorithm for the Euclidean norm, which is arguably the most natural lattice basis reduction algorithm, because it is a straightforward generalization of the well-known two-dimensional Gaussian algorithm. Our results are two-fold. From a mathematical point of view, we show that up to dimension four, the output of the greedy algorithm is optimal: the output basis reaches all the successive minima of the lattice. However, as soon as the lattice dimension is strictly higher than four, the output basis may not even reach the first minimum. More importantly, from a computational point of view, we show that up to dimension four, the bit-complexity of the greedy algorithm is quadratic without fast integer arithmetic: this allows to compute various lattice problems (e.g. computing a Minkowski-reduced basis and a closest vector) in quadratic time, without fast integer arithmetic, up to dimension four, while all other algorithms known for such problems have a bit-complexity which is at least cubic. This was already proved by Semaev up to dimension three using rather technical means, but it was previously unknown whether or not the algorithm was still polynomial in dimension four. Our analysis, based on geometric properties of low-dimensional lattices and in particular Voronoie cells, arguably simplifies Semaev's analysis in dimensions two and three, unifies the cases of dimensions two, three and four, but breaks down in dimension five.
机译:随着晶格尺寸的增加,数字几何中大多数有趣的算法问题都是NP难的。本文处理低维情况。我们研究了一种针对欧几里得范数的贪心格基约简算法,该算法可以说是最自然的格基基约简算法,因为它是众所周知的二维高斯算法的直接概括。我们的结果有两个方面。从数学角度来看,我们表明直到第四维,贪心算法的输出都是最优的:输出基础达到了晶格的所有连续最小值。但是,一旦晶格尺寸严格大于4,输出基础可能甚至不会达到第一个最小值。更重要的是,从计算的角度来看,我们表明,直到第四维,贪婪算法的位复杂度都是二次的,而没有快速整数算法:这允许计算各种晶格问题(例如,计算Minkowski约简的基和最接近的向量)在没有快速整数算术的情况下在二次时间内达到第4维,而所有其他已知此类问题的算法都具有至少三次立方的位复杂度。 Semaev已经使用相当技术性的手段证明了这一点,直到第3维为止,但是以前还不知道该算法在第4维上是否仍是多项式。我们基于低维晶格,特别是Voronoie单元的几何特性的分析,可以简化Semaev在第2维和第3维的分析,统一第2维,第3维和第4维的情况,但在第5维分解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号