首页> 外文会议> >Strain engineering for hole mobility enhancement in p-channel field-effect transistors
【24h】

Strain engineering for hole mobility enhancement in p-channel field-effect transistors

机译:用于增强p沟道场效应晶体管中空穴迁移率的应变工程

获取原文

摘要

A very promising strain engineering technique for enhancing the performance of p-channel transistors employs silicon-germanium (Si/sub 1-y/-Ge/sub y/) source and drain stressors. To further exploit this method of strain engineering, the physical mechanism by which the SiGe source/drain (S/D) stressors contribute to the strain field needs to be understood. We evaluate the strain field due to the SiGe source/drain stressor, and examine two important strain components that affect transistor performance: the lateral compressive strain component and the vertical tensile strain component. The impact of transistor design parameters, such as the Ge mole fraction y in the stressors, the spacing L between stressors, the stressor depth d, and the raised stressor height h, on the strain field are investigated. Hole mobility enhancement larger than 30% is achievable with L = 50 nm and y = 0.15. More aggressive mobility enhancement targets may be achievable by reducing the stressor spacing and employing a stressor with a larger lattice mismatch with the Si channel.
机译:增强p沟道晶体管性能的非常有前途的应变工程技术采用硅锗(Si / sub 1-y / -Ge / sub y /)源极和漏极应力源。为了进一步利用这种应变工程方法,需要了解SiGe源/漏(S / D)应力源对应变场做出贡献的物理机制。我们评估了由于SiGe源/漏应力源引起的应变场,并研究了影响晶体管性能的两个重要应变分量:横向压缩应变分量和垂直拉伸应变分量。研究了晶体管设计参数(例如应力源中的Ge摩尔分数y,应力源之间的间距L,应力源深度d和应力源高度h升高)对应变场的影响。 L = 50 nm和y = 0.15时,可以实现大于30%的空穴迁移率增强。通过减小应力源间距并采用与Si沟道晶格失配较大的应力源,可以实现更具侵略性的迁移率提高目标。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号