首页> 外文会议> >Phase Contrast Imaging Methods to Study Waves and Turbulence in High Temperature Tokamak Plasmas
【24h】

Phase Contrast Imaging Methods to Study Waves and Turbulence in High Temperature Tokamak Plasmas

机译:相衬成像方法研究高温托卡马克等离子体中的波动和湍流

获取原文

摘要

Summary form only given. Phase contrast imaging diagnostic (PCI) is an internal reference beam interferometric technique which has been used successfully in high temperature tokamak plasma experiments to image line integrated plasma density fluctuations. The PCI technique utilizes a 18 deep grooved "phase plate" which is inserted into an expanded beam path, and with the aid of a detector array one is able to measure wavelengths and correlation lengths of fluctuations propagating perpendicular to the laser beam. In the Alcator C-Mod and DIII-D tokamak PCI experiments, a CO2 laser beam is used to probe low frequency (f = 1 MHz) instabilities and in addition, in C-Mod high power launched ICRF waves (80 MHz) are also monitored. The fluctuations studied in the past in Alcator C-Mod include the so-called "quasi-coherent mode" (a ballooning mode localized to the edge pedestal), semi-coherent TAE-like modes, including Alfven wave cascades, low frequency turbulence, and high power launched ICRF waves. The ICRF waves are detected by a heterodyne technique using optical modulation of the laser beam. The ICRF wave propagation studies have confirmed mode conversion into kinetic ion cyclotron waves (the shear wave branch) and electrostatic ion Bernstein waves. In DIII-D, PCI has been used to study low frequency turbulence during L to H mode transition, ELMs, and coherent edge modes during the quiescent H-mode. Signatures of zonal flows have also been observed in past experiments. While most of the past studies were limited to wavelengths equal or longer than the ion gyro-radius (ki = 1, f = 1 MHz ), new upgrades to the electronics and optics will allow detection of wavelengths and frequencies in the electron gyro-radius regimes (ke = 1, f = 20 MHz). This new capability will allow us to study the electron temperature gradient modes and the trapped electron mode, both being candidates for determining electron transport in magnetically confined plasm-as. While spatial localization of long wavelength modes along the PCI laser beam is usually not possible, in the short wavelength regimes in a sheared magnetic field localization can be achieved by using a rotating masking plate in conjunction with the phase plate
机译:仅提供摘要表格。相衬成像诊断(PCI)是一种内部参考光束干涉测量技术,已成功地用于高温托卡马克等离子体实验中,以成像线积分的等离子体密度波动。 PCI技术利用了一个18槽深的“相位板”,该槽被插入到扩展的光束路径中,并且借助检测器阵列,能够测量垂直于激光束传播的波长和波动的相关长度。在Alcator C-Mod和DIII-D托卡马克PCI实验中,使用CO 2 激光束探测低频(f = 1 MHz)不稳定性,此外,还发射了C-Mod高功率还监视了ICRF波(80 MHz)。过去在Alcator C-Mod中研究的波动包括所谓的“准相干模式”(位于边缘基座的膨胀模式),半相干TAE状模式,包括Alfven波级联,低频湍流,大功率发射了ICRF波。通过外差技术使用激光束的光学调制来检测ICRF波。 ICRF波传播研究已证实模式转换为动离子回旋波(剪切波分支)和静电离子伯恩斯坦波。在DIII-D中,PCI已用于研究L到H模式过渡,ELM和静态H模式期间相干边缘模式期间的低频湍流。在过去的实验中也观察到了地层流的特征。尽管过去的大多数研究都将波长限制为等于或大于离子陀螺半径(k i = 1,f = 1 MHz),但对电子学和光学器件的新升级将允许检测波长电子陀螺半径范围内的频率和频率(k e = 1,f = 20 MHz)。这项新功能将使我们能够研究电子温度梯度模式和俘获电子模式,它们都是确定磁约束等离子体as中电子传输的候选者。虽然通常不可能沿着PCI激光束进行长波长模式的空间定位,但在短波长范围内,通过将旋转掩膜板与相板结合使用,可以实现剪切磁场定位

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号