首页> 外文会议> >Using experimental analysis to evaluate the influence of printed circuit board construction on the thermal performance of four package types in both natural and forced convection
【24h】

Using experimental analysis to evaluate the influence of printed circuit board construction on the thermal performance of four package types in both natural and forced convection

机译:使用实验分析评估印刷电路板结构对自然和强制对流中四种封装类型的热性能的影响

获取原文

摘要

As the functionality of electronic systems increase, so does the complexity of printed circuit board (PCB) design, with greater component packing densities requiring additional internal signal, power and ground layers to facilitate interconnection. The extra copper content introduced increases PCB thermal conductivity and heat spreading capability, which can strongly influence component operating temperature. Therefore, this experimental study sought to quantify the impact of PCB construction on component operating temperature and relate this sensitivity to the package design, PCB effective conductivity and convective environment. This was achieved by measuring the steady state thermal performance of four package types (PSO20: heat slug up, PSO20: heat slug down, LFBGA80 and SBGA352) on up to six different, single-component thermal test PCBs in the standard natural and forced convection environments. Test velocities ranged from 0.5 m/s to 5.0 m/s and all test components contained a thermal test die. Measurements of junction temperature and component-PCB surface temperature distributions are both presented for power dissipation levels within the range 0.5 to 6.0 Watts. The study includes the low and high conductivity JEDEC standard, FR4-based test PCBs and typical application boards. As each PCB had a different internal structure and effective thermal conductivity, this study highlights the sensitivity of component operating temperature to the PCB, provides benchmark data for validating numerical models, and helps one assess the applicability of standard junction-to-air thermal resistance (/spl theta//sub JA/ and /spl theta//sub JMA/), as well as both junction-to-board (/spl Psi//sub JB/) and junction-to-top (/spl Psi//sub JT/) thermal characterisation parameters for design purposes on nonstandard PCBs.
机译:随着电子系统功能的增加,印刷电路板(PCB)设计的复杂性也随之增加,而更高的组件封装密度要求额外的内部信号,电源和接地层以促进互连。引入的额外铜含量会提高PCB的导热性和散热能力,从而严重影响元件的工作温度。因此,本实验研究试图量化PCB构造对组件工作温度的影响,并将这种敏感性与封装设计,PCB有效电导率和对流环境联系起来。这是通过在标准自然对流和强制对流中的多达六种不同的单组件热测试PCB上测量四种封装类型(PSO20:散热片,PSO20:散热片,LFBGA80和SBGA352)的稳态热性能来实现的环境。测试速度范围从0.5 m / s到5.0 m / s,所有测试组件都包含一个热测试模具。结温和元件PCB表面温度分布的测量均针对0.5至6.0瓦范围内的功耗水平进行了说明。该研究包括低和高电导率JEDEC标准,基于FR4的测试PCB和典型应用板。由于每块PCB具有不同的内部结构和有效的导热性,因此本研究着重说明了元件工作温度对PCB的敏感性,为验证数值模型提供了基准数据,并帮助评估了标准结对空气热阻的适用性( / spl theta // sub JA /和/ spl theta // sub JMA /),以及结对板(/ spl Psi // sub JB /)和结对顶(/ spl Psi // sub JT /)热特性参数,用于非标准PCB上的设计目的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号