首页> 外文会议> >Effect of single-step, high-oxygen-concentration annealing on buried oxide layer microstructure in post-implant-amorphized, low-dose SIMOX material
【24h】

Effect of single-step, high-oxygen-concentration annealing on buried oxide layer microstructure in post-implant-amorphized, low-dose SIMOX material

机译:一步高氧浓度退火对植入后非晶化低剂量SIMOX材料中掩埋氧化物层微观结构的影响

获取原文

摘要

Fabrication of high-dose SIMOX (typically 1.8/spl times/10/sup 18/ cm/sup 2/ at 200 keV) is a maturing materials technology with increasing commercial usage. However, lower-dose SIMOX (2 to 4/spl times/10/sup 17/ cm/sup 2/) has the potential to be more economical, as well as allow device designers a choice of oxide thickness, but film uniformity and quality must be as good or better than standard high-dose material. A variety of approaches to produce low-dose SIMOX have been used which include: low dose implant plus ITOX (internal thermal oxidation), which uses a second high temperature anneal with high oxygen concentration (Nakashima et al. 1996; Mrstik et al. 1995); multiple energy implants (Alles, 1997); lower energy implantation (Anc et al. 1998); rapid ramping to the high temperature anneal range (Ogura, 1998); N pre-implantation (Meyappan et al. 1995); and very-low dose, post-implant amorphization prior to high temperature annealing (Holland et al. 1996; Bagchi et al. 1997). For the last technique, it was reported there were changes in the precipitation mechanisms that control BOX development. The first was elimination of multiply-faulted defects as sites for preferred nucleation and growth of oxides which form a discontinuous upper layer of precipitates in untreated material. The second was enhanced diffusion of oxygen along defects and phase boundaries in the amorphized region to the single BOX layer that was developing. In this research, we extend the work on post-implant-amorphized low-dose SIMOX by reporting effects of a single-step high oxygen concentration anneal on its BOX microstructure.
机译:高剂量SIMOX的制造(通常1.8 / SPL时/ 10 / SUP 18 / cm / SUP 2 /适n200KEV)是一种成熟的材料技术,随着商业用途的增加。但是,低剂量SIMOX(2至4 / SPL时间/ 10 / SUP 17 / CM / SUP 2 /)具有更经济的潜力,以及允许设备设计师选择氧化物厚度,但膜均匀性和质量必须与标准的高剂量材料一样好或更好。已经使用了产生低剂量SIMOX的各种方法,包括:低剂量植入物加itox(内部热氧化),其使用具有高氧浓度的第二高温退火(Nakashima等,1996; Mrstik等,1995 );多种能量植入物(Alles,1997);较低能量植入(ANC等人1998);快速升高到高温退火范围(Ogura,1998); n预植入(Meyappan等人1995);和非常低剂量,高温退火前的植入后非形态化(Holland等,1996; Bagchi等,1997)。对于最后一项技术,据报道,控制框开发的降水机制发生变化。首先是消除倍增故障缺陷作为优选成核和氧化物生长的位点,其在未处理的材料中形成不连续的沉淀物的不连续上层。第二次沿着非晶区域中的缺陷和相界面增强了氧的扩散到显影的单箱层。在这项研究中,我们通过报告单步高氧浓度退火对其盒子组织的影响来延长植入后的低剂量SIMOX的工作。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号