首页> 外文会议>Machine vision, image processing, and pattern analysis >A Swarm Intelligence Based Memetic Algorithm for Task Allocation in Distributed Systems
【24h】

A Swarm Intelligence Based Memetic Algorithm for Task Allocation in Distributed Systems

机译:基于群体智能的Memetic算法在分布式系统中的任务分配

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a Swarm Intelligence based Memetic algorithm for Task Allocation and scheduling in distributed systems. The tasks scheduling in distributed systems is known as an NP-complete problem. Hence, many genetic algorithms have been proposed for searching optimal solutions from entire solution space. However, these existing approaches are going to scan the entire solution space without considering the techniques that can reduce the complexity of the optimization. Spending too much time for doing scheduling is considered the main shortcoming of these approaches. Therefore, in this paper memetic algorithm has been used to cope with this shortcoming. With regard to load balancing efficiently, Bee Colony Optimization (BCO) has been applied as local search in the proposed memetic algorithm. Extended experimental results demonstrated that the proposed method outperformed the existing GA-based method in terms of CPU utilization.
机译:针对分布式系统中的任务分配和调度问题,提出了一种基于群体智能的Memetic算法。分布式系统中的任务调度被称为NP完全问题。因此,已经提出了许多遗传算法来从整个解空间中搜索最优解。但是,这些现有方法将扫描整个解决方案空间,而无需考虑可以降低优化复杂性的技术。花太多时间进行调度被认为是这些方法的主要缺点。因此,在本文中使用了模因算法来解决这一缺点。关于有效的负载平衡,蜂群优化(BCO)已被用作拟议的模因算法中的局部搜索。扩展的实验结果表明,该方法在CPU利用率方面优于现有的基于GA的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号