首页> 外文会议>Machine learning and data mining in pattern recognition >A Neural Approach for SME's Credit Risk Analysis in Turkey
【24h】

A Neural Approach for SME's Credit Risk Analysis in Turkey

机译:土耳其中小企业信用风险分析的神经方法

获取原文
获取原文并翻译 | 示例

摘要

This study presents a neural approach which cascades a neural classifier which is multilayer perceptron (MLP) and a neural rule extractor (NRE) for real-life Small and Medium Enterprises (SMEs) in Turkey. In feature selection stage, decision tree (DT), recursive feature extraction (RFE), factor analysis (FA), principal component analysis (PCA) methods are implemented. In this stage, the RFE approach gave the best result in terms of classification accuracy and minimal input dimension. Then, in classification stage, a MLP that is used for preprocessing is followed by a NRE. The MLP makes a decision for customers as being "good" or "bad" and the NRE reveals the rules how the classifier reached at the final decision. In the experiments, Turkish SME database has 512 samples. The proposed approach compared with k-NN and SVM classifiers. It was observed that the MLP-NRE was slightly better than SVM and local k-NN.
机译:这项研究提出了一种神经方法,该方法将多层感知器(MLP)和神经规则提取器(NRE)的神经分类器级联,用于土耳其的现实中小型企业(SME)。在特征选择阶段,实现决策树(DT),递归特征提取(RFE),因子分析(FA),主成分分析(PCA)方法。在此阶段,RFE方法在分类准确性和最小输入维度方面给出了最佳结果。然后,在分类阶段,用于预处理的MLP之后是NRE。 MLP为客户做出“好”或“坏”的决定,而NRE则揭示了分类器在最终决定时如何达到的规则。在实验中,土耳其SME数据库有512个样本。所提出的方法与k-NN和SVM分类器进行了比较。观察到,MLP-NRE略优于SVM和局部k-NN。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号