首页> 外文会议>Machine learning and data mining in pattern recognition >Comparative Analysis of Feature Selection Methods for Blood Cell Recognition in Leukemia
【24h】

Comparative Analysis of Feature Selection Methods for Blood Cell Recognition in Leukemia

机译:白血病血细胞识别特征选择方法的比较分析

获取原文
获取原文并翻译 | 示例

摘要

This study analyses different methods of diagnostic feature selection in the problem of classification of the blood cells in leukemia. The analyzed methods belong to the wrapper and filter methods and cover wide range of approaches to feature selection problem. In particular they cover 7 methods, each of them working on different principle. As a results of this preprocessing stage we define the best (according to the applied method) set of features which is next used as the input for the Gaussian kernel SVM classifier. The last step of blood cell recognition is the integration of the results of application of all methods. The numerical results of experiments will be presented and analyzed.
机译:这项研究分析了白血病血细胞分类问题中不同的诊断特征选择方法。所分析的方法属于包装和过滤方法,涵盖了特征选择问题的多种方法。特别是,它们涵盖了7种方法,每种方法的工作原理都不相同。作为此预处理阶段的结果,我们定义了最佳的功能集(根据应用的方法),接下来将其用作高斯内核SVM分类器的输入。血细胞识别的最后一步是所有方法应用结果的整合。将介绍和分析实验的数值结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号