首页> 外文会议>Machine learning and data mining in pattern recognition >Investigation in Transfer Learning: Better Way to Apply Transfer Learning between Agents
【24h】

Investigation in Transfer Learning: Better Way to Apply Transfer Learning between Agents

机译:迁移学习调查:在代理之间应用迁移学习的更好方法

获取原文
获取原文并翻译 | 示例

摘要

This paper propose to investigate a better way to apply Transfer Learning (TL) between agents to speed up the Q-learning Reinforcement Learning algorithm and combines Case-Based Reasoning (CBR) and Heuristically Accelerated Reinforcement Learning (HARL) techniques. The experiments were made comparing differents approaches of Transfer Learning were actions learned in the acrobot problem can be used to speed up the learning of the policies of stability for Robocup 3D. The results confirm that the same Transfer Learning information can show differents results, depending how is applied.
机译:本文提议研究一种更好的方法,以在代理之间应用转移学习(TL)来加快Q学习强化学习算法,并结合基于案例的推理(CBR)和启发式加速强化学习(HARL)技术。进行了实验,比较了迁移学习的不同方法,这些学习是在杂技机器人问题中学习的动作可以用来加快Robocup 3D稳定性策略学习的。结果证实,相同的“转移学习”信息可以显示不同的结果,具体取决于应用方式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号