首页> 外文会议>Learning and intelligent optimization >A Reinforcement Learning Approach for the Flexible Job Shop Scheduling Problem
【24h】

A Reinforcement Learning Approach for the Flexible Job Shop Scheduling Problem

机译:柔性作业车间调度问题的强化学习方法

获取原文
获取原文并翻译 | 示例

摘要

In this work we present a Reinforcement Learning approach for the Flexible Job Shop Scheduling problem. The proposed approach follows the ideas of the hierarchical approaches and combines learning and optimization in order to achieve better results. Several problem instances were used to test the algorithm and to compare the results with those reported by previous approaches.
机译:在这项工作中,我们提出了一种灵活学习车间调度问题的强化学习方法。所提出的方法遵循分层方法的思想,并将学习和优化相结合,以获得更好的结果。使用了几个问题实例来测试算法,并将结果与​​先前方法报告的结果进行比较。

著录项

  • 来源
    《Learning and intelligent optimization》|2011年|p.253-262|共10页
  • 会议地点 Rome(IT);Rome(IT)
  • 作者单位

    CoMo Lab, Department of Computer Science, Vrije Universiteit Brussel, Belgium,Department of Computer Science, Central University of Las Villas, Cuba;

    CoMo Lab, Department of Computer Science, Vrije Universiteit Brussel, Belgium;

    Department of Computer Science, Central University of Las Villas, Cuba;

    Department of Computer Science, Central University of Las Villas, Cuba;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 计算机网络;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号