首页> 外文会议>Knowledge-based software engineering >Artificial Immune System-based Music Piece Recommendation
【24h】

Artificial Immune System-based Music Piece Recommendation

机译:基于人工免疫系统的音乐作品推荐

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we address the recommendation process as a one-class classification problem based on content features and a Negative Selection (NS) algorithm that captures user preferences. Specifically, we develop an Artificial Immune System (AIS) based on a Negative Selection Algorithm that forms the core of a music recommendation system. A NS-based learning algorithm allows our system to build a classifier of all music pieces in a database and make personalized recommendations to users. This is achieved quite efficiently through the intrinsic property of the NS algorithm to discriminate "self-objects" (i.e. music pieces of user's like) from "non self-objects", especially when the class of non self-object is vast when compared to the class of self-objects and the examples (samples) of music pieces come only from the class of self-objects (music pieces of user's like). Our rec-ommender system has been fully implemented and evaluated and found to outperform state of the art recommender systems based on support vector machines-based methodologies.
机译:在本文中,我们将推荐过程作为基于内容特征和捕获用户偏好的负选择(NS)算法的一类分类问题来解决。具体来说,我们开发了一种基于否定选择算法的人工免疫系统(AIS),该算法构成了音乐推荐系统的核心。基于NS的学习算法使我们的系统能够对数据库中所有音乐作品进行分类,并向用户提供个性化推荐。通过NS算法的内在属性将“自我对象”(即用户喜欢的音乐作品)与“非自我对象”区分开来,可以非常有效地实现这一点,尤其是当非自我对象的类别与自对象的类别和音乐作品的示例(样本)仅来自自对象的类别(用户喜欢的音乐作品)。基于基于支持向量机的方法,我们的直肠癌治疗系统已得到全面实施和评估,其性能优于最先进的推荐系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号