首页> 外文会议>2019 International Conference on Robotics and Automation >One-to-many bipartite matching based coalition formation for multi-robot task allocation
【24h】

One-to-many bipartite matching based coalition formation for multi-robot task allocation

机译:基于一对多匹配的联盟构成,用于多机器人任务分配

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we study the NP-Hard problem of multi-robot coalition formation for task allocation. To tackle this notoriously difficult problem, we model it as a variant of classical bipartite matching, which we call One-To-Many Bipartite Matching (OTMaM). Unlike the classical bipartite matching techniques used for matching a unique robot to a unique task, in the OTMaM problem, we let multiple robots to be matched to a single task while restricting the opposite. To this end, we propose a novel heuristic algorithm that allocates robots to tasks by finding mutually best robot-task pairs. Our algorithm provides a similar theoretical worst-case approximation ratio and guarantees a better worst-case time complexity than a comparable algorithm from the literature. The proposed approach in this paper is proved to be deterministic and the resultant matching is perfect. Simulation results also demonstrate the scalability of the presented algorithm (taking less than 1 millisecond with 100 robots and 10 tasks).
机译:在本文中,我们研究了用于任务分配的多机器人联盟形成的NP-Hard问题。为了解决这个臭名昭著的难题,我们将其建模为经典二分匹配的一种,我们称之为一对多二分匹配(OTMaM)。与用于将唯一机器人匹配到唯一任务的经典二分匹配技术不同,在OTMaM问题中,我们让多个机器人匹配单个任务,同时限制了相反的任务。为此,我们提出了一种新颖的启发式算法,该算法通过查找互为最佳的机器人任务对来将机器人分配给任务。与文献中的同类算法相比,我们的算法提供了相似的理论最坏情况近似率,并保证了更好的最坏情况时间复杂度。证明了本文提出的方法是确定性的,并且结果匹配是完美的。仿真结果还证明了所提出算法的可扩展性(100个机器人和10个任务花费不到1毫秒的时间)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号