首页> 外文会议>International Conference on Embedded and Ubiquitous Computing(EUC 2006); 20060801-04; Seoul(KR) >A Speech and Character Combined Recognition Engine for Mobile Devices
【24h】

A Speech and Character Combined Recognition Engine for Mobile Devices

机译:用于移动设备的语音和字符组合识别引擎

获取原文
获取原文并翻译 | 示例

摘要

A Speech and Character Combined Recognition Engine (SCCRE) is developed for working on Personal Digital Assistants (PDA) or on mobile devices. In SCCRE, feature extraction from speech and character is carried out separately, but recognition is performed in an engine. The recognition engine employs essentially CHMM (Continuous Hidden Markov Model) structure and this CHMM consists of variable parameter topology in order to minimize the number of model parameters and reduce recognition time. This model also adopts our proposed SSMS (Successive State and Mixture Splitting) for generating context independent model. SSMS optimizes the number of mixtures through splitting in mixture domain and the number of states through splitting in time domain. When we applied our developed engine which adopts SSMS to speech recognition for mobile devices, SSMS can reduce total number of Gaussian up to 40.0% compared with the fixed parameter models at the same recognition performance. This leads that SSMS can reduce the size of memory for models to 65% and that for processing to 82%. Moreover, recognition time decreases 17% with SSMS model but still maintains the recognition rate.
机译:语音和字符组合识别引擎(SCCRE)被开发用于在个人数字助理(PDA)或移动设备上工作。在SCCRE中,分别从语音和字符中提取特征,但是在引擎中执行识别。识别引擎本质上采用CHMM(连续隐马尔可夫模型)结构,该CHMM由可变参数拓扑组成,以最大程度地减少模型参数的数量并减少识别时间。该模型还采用了我们提出的SSMS(成功状态和混合物分解)来生成上下文无关的模型。 SSMS通过在混合域中进行拆分来优化混合物的数量,并通过在时域中进行拆分来优化状态的数量。当我们将采用SSMS的开发引擎应用于移动设备的语音识别时,与固定参数模型相比,SSMS可以在相同的识别性能下将高斯总数减少多达40.0%。这导致SSMS可以将模型的内存大小减少到65%,将处理的内存减少到82%。此外,使用SSMS模型,识别时间减少了17%,但仍保持了识别率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号