首页> 外文会议>International Conference on Computational Intelligence and Security(CIS 2005) pt.1; 20051215-19; Xi'an(CN) >Grid-ODF: Detecting Outliers Effectively and Efficiently in Large Multi-dimensional Databases
【24h】

Grid-ODF: Detecting Outliers Effectively and Efficiently in Large Multi-dimensional Databases

机译:Grid-ODF:有效和高效地检测大型多维数据库中的异常值

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we will propose a novel outlier mining algorithm, called Grid-ODF, that takes into account both the local and global perspectives of outliers for effective detection. The notion of Outlying Degree Factor (ODF), that reflects the factors of both the density and distance, is introduced to rank outliers. A grid structure partitioning the data space is employed to enable Grid-ODF to be implemented efficiently. Experimental results show that Grid-ODF outperforms existing outlier detection algorithms such as LOF and KNN-distance in terms of effectiveness and efficiency.
机译:在本文中,我们将提出一种新颖的离群值挖掘算法,称为Grid-ODF,该算法同时考虑了离群值的局部和全局视角以进行有效检测。可以将反映密度和距离的因素的离群因子(ODF)概念引入异常值排名。采用划分数据空间的网格结构以使Grid-ODF得以有效实现。实验结果表明,Grid-ODF在有效性和效率方面都优于现有的离群值检测算法,如LOF和KNN距离。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号