【24h】

A Data Analytic Engine Towards Self-Management of Cyber-Physical Systems

机译:面向网络物理系统自我管理的数据分析引擎

获取原文

摘要

With the increasing complexity of cyber-physical systems, it is essential to enhance their self-management capabilities (e.g., self-protection, self-optimization). This paper presents a data-oriented approach to achieving that goal, given that a large amount of measurements can be collected in current systems. We investigate typical data characteristics in physical systems, and identify that the collected data from those systems exhibit a wide range of diversities. Following those observations, a new analytic engine is proposed and developed to extract knowledge from measurement data streams in physical systems. The engine treats each attribute in measurements as a time series and contains an ensemble of models, each attempting to discover a specific data property accordingly, such as periodicity, pairwise dependency and so on. Therefore time series are profiled based on their properties captured by engine models. The extracted data profiles can be further used to facilitate several management tasks of system status monitoring and online anomaly detection. Our experimental results in a real power plant have demonstrated that our analytic engine can correctly profile heterogeneous time series in the system, and successfully detect a number of abnormal situations in the system operation including some system inspection events as well as component faults.
机译:随着网络物理系统的复杂性不断提高,必须增强其自我管理能力(例如,自我保护,自我优化)。鉴于可以在当前系统中收集大量测量值,因此本文提出了一种面向数据的方法来实现该目标。我们调查物理系统中的典型数据特征,并确定从这些系统收集的数据表现出广泛的多样性。根据这些观察,提出并开发了一种新的分析引擎,以从物理系统中的测量数据流中提取知识。引擎将测量中的每个属性视为一个时间序列,并包含一组模型,每个模型都试图相应地发现特定的数据属性,例如周期性,成对依存性等。因此,时间序列是根据引擎模型捕获的属性进行分析的。提取的数据配置文件可进一步用于促进系统状态监视和在线异常检测的若干管理任务。我们在真实发电厂中的实验结果表明,我们的分析引擎可以正确地描述系统中的异构时间序列,并成功检测到系统运行中的许多异常情况,包括一些系统检查事件以及组件故障。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号