首页> 外文会议>International Joint Conference on Computer Science and Software Engineering >Comparison of probabilistic neural network with multilayer perceptron and support vector machine for detecting traffic incident on expressway based on simulation data
【24h】

Comparison of probabilistic neural network with multilayer perceptron and support vector machine for detecting traffic incident on expressway based on simulation data

机译:基于仿真数据的概率神经网络与多层感知器和支持向量机的高速公路交通事故检测比较

获取原文

摘要

This research focuses on comparing probabilistic neural network with multilayer perceptron and support vector machine for detecting traffic incident on expressway based on simulation data. The data used in this experiment contains speed, density, occupancy, traffic flow, and time headway at specific location on expressway, as well as both upstream and downstream detectors. These data are generated by using the traffic modelling software, AIMSUN. Four indicators are used in evaluating the model's performance which are detection rate, false alarm rate, mean time to detect, and classification rate. The result of these three models is not much different. These three models can mostly detect traffic incident and greatly classify between non-incident and incident situation. These model's accuracy are more than 95 percent in training data and more than 75 percent in validating data.
机译:这项研究的重点是将概率神经网络与多层感知器和支持向量机进行比较,以基于仿真数据检测高速公路上的交通事故。此实验中使用的数据包含高速公路特定位置以及上游和下游检测器的速度,密度,占用率,交通流量和时距。这些数据是通过使用流量建模软件AIMSUN生成的。用于评估模型性能的四个指标是检测率,误报率,平均检测时间和分类率。这三个模型的结果差别不大。这三个模型大部分可以检测交通事故,并且可以在非事故和事故情况之间进行很大的分类。这些模型在训练数据中的准确性超过95%,在验证数据中的准确性超过75%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号