首页> 外文会议>International Joint Conference on Computer Science and Software Engineering >A Deep Learning Methodology for Automatic Assessment of Portrait Image Aesthetic Quality
【24h】

A Deep Learning Methodology for Automatic Assessment of Portrait Image Aesthetic Quality

机译:一种自动评估人像图像美学质量的深度学习方法

获取原文

摘要

Generally, a traditional methodology to assess the aesthetics (appreciating beauty) of a photograph involves a number of professional photographers rating the photo based on given criteria and providing ensemble feedback minimize bias. Such a traditional photo assessment method, however, is not applicable to massive users, especially in real-time. To mitigate such an issue, recent studies have devoted on developing algorithms to automatically provide feedback to photo takers. Most of such algorithms train variants of neural networks using ground-truth photos assessed by professional photographers. Regardless, most existing photo assessment algorithms provide the aesthetic score as a single number. From our observation, users typically use multiple criteria to justify the beautifulness of a photo, and hence a single rating score may not be informative. In this paper, we propose a novel Fine-tuned Inception with Fully Connected and Regression Layers model which gives five attribute scores: vivid colour, colour harmony, lighting, balance of elements, and depth of field. T his s olution i ncorporates t he pre-trained inception model which is the state-of-the-art model for processing images. Our proposed algorithm enhances the existing state-of-the-art by fine-tuning the parameters, introducing fully connected layers, and attaching the regression layers to compute the numeric score for each focus attribute. The experimental results show that our model helps to decrease the mean absolute error (MAE) to 0.211, benchmarking on the aesthetics and attributes datasets provided in the previous studies.
机译:通常,评估照片的美学(欣赏美感)的传统方法包括许多专业摄影师根据给定的标准对照片进行评级,并提供整体反馈以最小化偏差。但是,这种传统的照片评估方法不适用于大量用户,尤其是实时用户。为了减轻这种问题,最近的研究致力于开发自动向照相者提供反馈的算法。大多数此类算法使用由专业摄影师评估的真实照片来训练神经网络的变体。无论如何,大多数现有的照片评估算法都将美学分数作为一个数字提供。根据我们的观察,用户通常使用多个条件来证明照片的精美性,因此单个评分可能无法提供信息。在本文中,我们提出了一种新颖的具有完全连接层和回归层的微调初始模型,该模型给出了五个属性得分:鲜艳的色彩,色彩和谐,照明,元素平衡和景深。他的解决方案集成了预训练的初始模型,该模型是用于处理图像的最新模型。我们提出的算法通过对参数进行微调,引入完全连接的图层并附加回归图层以计算每个焦点属性的数值来增强现有技术水平。实验结果表明,我们的模型有助于将平均绝对误差(MAE)降低至0.211,以先前研究提供的美学和属性数据集为基准。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号